Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Jakobsen
1
78 kgDémare
2
76 kgAckermann
3
78 kgConsonni
4
60 kgDe Buyst
5
72 kgKragh Andersen
6
73 kgTheuns
7
72 kgPaulinho
8
75 kgAberasturi
9
69 kgMendes
10
64 kgAngulo
11
67 kgLaporte
12
76 kgRibeiro
13
63 kgPaulinho
14
64 kgLourenço
15
67 kgPowless
16
67 kgSchillinger
17
72 kg
1
78 kgDémare
2
76 kgAckermann
3
78 kgConsonni
4
60 kgDe Buyst
5
72 kgKragh Andersen
6
73 kgTheuns
7
72 kgPaulinho
8
75 kgAberasturi
9
69 kgMendes
10
64 kgAngulo
11
67 kgLaporte
12
76 kgRibeiro
13
63 kgPaulinho
14
64 kgLourenço
15
67 kgPowless
16
67 kgSchillinger
17
72 kg
Weight (KG) →
Result →
78
60
1
17
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | JAKOBSEN Fabio | 78 |
| 2 | DÉMARE Arnaud | 76 |
| 3 | ACKERMANN Pascal | 78 |
| 4 | CONSONNI Simone | 60 |
| 5 | DE BUYST Jasper | 72 |
| 6 | KRAGH ANDERSEN Søren | 73 |
| 7 | THEUNS Edward | 72 |
| 8 | PAULINHO Pedro | 75 |
| 9 | ABERASTURI Jon | 69 |
| 10 | MENDES José | 64 |
| 11 | ANGULO Antonio | 67 |
| 12 | LAPORTE Christophe | 76 |
| 13 | RIBEIRO David | 63 |
| 14 | PAULINHO Sérgio Miguel | 64 |
| 15 | LOURENÇO Rafael | 67 |
| 16 | POWLESS Neilson | 67 |
| 17 | SCHILLINGER Andreas | 72 |