Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Quinn
1
67 kgRodríguez
2
67 kgAndrade
3
64 kgRiccitello
4
55 kgBarbosa
5
65 kgSilva
6
60 kgLopes
7
68 kgCanal
8
70 kgLouvel
9
77 kgDrizners
10
70 kgvan den Berg
11
73 kgMacedo
12
66 kgvan der Tuuk
15
64 kgPinto
16
68 kgGonçalves
17
55 kgSilva
20
67 kgSousa
21
59 kgSalgueiro
24
68 kgGarcía Pierna
25
67 kgSalgado
26
65 kg
1
67 kgRodríguez
2
67 kgAndrade
3
64 kgRiccitello
4
55 kgBarbosa
5
65 kgSilva
6
60 kgLopes
7
68 kgCanal
8
70 kgLouvel
9
77 kgDrizners
10
70 kgvan den Berg
11
73 kgMacedo
12
66 kgvan der Tuuk
15
64 kgPinto
16
68 kgGonçalves
17
55 kgSilva
20
67 kgSousa
21
59 kgSalgueiro
24
68 kgGarcía Pierna
25
67 kgSalgado
26
65 kg
Weight (KG) →
Result →
77
55
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | QUINN Sean | 67 |
2 | RODRÍGUEZ Carlos | 67 |
3 | ANDRADE Pedro | 64 |
4 | RICCITELLO Matthew | 55 |
5 | BARBOSA Diogo | 65 |
6 | SILVA Afonso | 60 |
7 | LOPES Pedro Miguel | 68 |
8 | CANAL Carlos | 70 |
9 | LOUVEL Matis | 77 |
10 | DRIZNERS Jarrad | 70 |
11 | VAN DEN BERG Marijn | 73 |
12 | MACEDO João | 66 |
15 | VAN DER TUUK Danny | 64 |
16 | PINTO Pedro | 68 |
17 | GONÇALVES Hélder | 55 |
20 | SILVA Pedro | 67 |
21 | SOUSA José | 59 |
24 | SALGUEIRO Carlos Miguel | 68 |
25 | GARCÍA PIERNA Raúl | 67 |
26 | SALGADO João | 65 |