Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Asgreen
1
75 kgVan Wilder
2
64 kgLourenço
4
67 kgCort
5
68 kgPidcock
6
58 kgGoossens
7
64 kgCosta
8
69 kgVacek
9
75 kgAlmeida
10
63 kgCavagna
11
78 kgKwiatkowski
12
68 kgAskey
13
75 kgCastroviejo
14
62 kgDe Plus
15
67 kgTrentin
16
74 kgKamp
17
74 kgAmado
18
65 kgMartínez
19
63 kgHiguita
20
57 kgHindley
21
60 kgGarcía González
22
62 kgHaller
23
72 kg
1
75 kgVan Wilder
2
64 kgLourenço
4
67 kgCort
5
68 kgPidcock
6
58 kgGoossens
7
64 kgCosta
8
69 kgVacek
9
75 kgAlmeida
10
63 kgCavagna
11
78 kgKwiatkowski
12
68 kgAskey
13
75 kgCastroviejo
14
62 kgDe Plus
15
67 kgTrentin
16
74 kgKamp
17
74 kgAmado
18
65 kgMartínez
19
63 kgHiguita
20
57 kgHindley
21
60 kgGarcía González
22
62 kgHaller
23
72 kg
Weight (KG) →
Result →
78
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | ASGREEN Kasper | 75 |
2 | VAN WILDER Ilan | 64 |
4 | LOURENÇO Rafael | 67 |
5 | CORT Magnus | 68 |
6 | PIDCOCK Thomas | 58 |
7 | GOOSSENS Kobe | 64 |
8 | COSTA Rui | 69 |
9 | VACEK Mathias | 75 |
10 | ALMEIDA João | 63 |
11 | CAVAGNA Rémi | 78 |
12 | KWIATKOWSKI Michał | 68 |
13 | ASKEY Lewis | 75 |
14 | CASTROVIEJO Jonathan | 62 |
15 | DE PLUS Laurens | 67 |
16 | TRENTIN Matteo | 74 |
17 | KAMP Alexander | 74 |
18 | AMADO Gonçalo | 65 |
19 | MARTÍNEZ Daniel Felipe | 63 |
20 | HIGUITA Sergio | 57 |
21 | HINDLEY Jai | 60 |
22 | GARCÍA GONZÁLEZ Sergio | 62 |
23 | HALLER Marco | 72 |