Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Thijssen
1
74 kgvan den Berg
2
73 kgMeeus
3
80 kgMartínez
4
63 kgBoven
5
62 kgEvenepoel
6
63 kgKuss
7
61 kgDémare
8
76 kgHiguita
9
57 kgOliveira
10
66 kgLeknessund
11
72 kgBayer
12
71 kgTratnik
13
67 kgStuyven
14
78 kgPidcock
15
58 kgGeoghegan Hart
16
65 kgvan Aert
17
78 kgHeiduk
18
70 kgFonte
19
60 kgArensman
20
68 kgLanda
21
61 kgKnox
22
58 kgScaroni
25
63 kg
1
74 kgvan den Berg
2
73 kgMeeus
3
80 kgMartínez
4
63 kgBoven
5
62 kgEvenepoel
6
63 kgKuss
7
61 kgDémare
8
76 kgHiguita
9
57 kgOliveira
10
66 kgLeknessund
11
72 kgBayer
12
71 kgTratnik
13
67 kgStuyven
14
78 kgPidcock
15
58 kgGeoghegan Hart
16
65 kgvan Aert
17
78 kgHeiduk
18
70 kgFonte
19
60 kgArensman
20
68 kgLanda
21
61 kgKnox
22
58 kgScaroni
25
63 kg
Weight (KG) →
Result →
80
57
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | THIJSSEN Gerben | 74 |
2 | VAN DEN BERG Marijn | 73 |
3 | MEEUS Jordi | 80 |
4 | MARTÍNEZ Daniel Felipe | 63 |
5 | BOVEN Lars | 62 |
6 | EVENEPOEL Remco | 63 |
7 | KUSS Sepp | 61 |
8 | DÉMARE Arnaud | 76 |
9 | HIGUITA Sergio | 57 |
10 | OLIVEIRA Rui | 66 |
11 | LEKNESSUND Andreas | 72 |
12 | BAYER Tobias | 71 |
13 | TRATNIK Jan | 67 |
14 | STUYVEN Jasper | 78 |
15 | PIDCOCK Thomas | 58 |
16 | GEOGHEGAN HART Tao | 65 |
17 | VAN AERT Wout | 78 |
18 | HEIDUK Kim | 70 |
19 | FONTE César | 60 |
20 | ARENSMAN Thymen | 68 |
21 | LANDA Mikel | 61 |
22 | KNOX James | 58 |
25 | SCARONI Christian | 63 |