Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Martínez
1
63 kgEvenepoel
2
61 kgLeknessund
3
72 kgKuss
4
61 kgTivani
5
67 kgvan Aert
6
78 kgHealy
8
65 kgUrianstad Bugge
9
61 kgBayer
11
71 kgSalgueiro
12
68 kgShaw
13
63 kgHiguita
14
57 kgPidcock
15
58 kgLeemreize
16
66 kgAbrahamsen
17
78 kgTratnik
18
67 kgScaroni
19
63 kgKnox
20
58 kgNunes
21
64 kgMayrhofer
22
70 kgFigueiredo
23
56 kgFonte
24
60 kg
1
63 kgEvenepoel
2
61 kgLeknessund
3
72 kgKuss
4
61 kgTivani
5
67 kgvan Aert
6
78 kgHealy
8
65 kgUrianstad Bugge
9
61 kgBayer
11
71 kgSalgueiro
12
68 kgShaw
13
63 kgHiguita
14
57 kgPidcock
15
58 kgLeemreize
16
66 kgAbrahamsen
17
78 kgTratnik
18
67 kgScaroni
19
63 kgKnox
20
58 kgNunes
21
64 kgMayrhofer
22
70 kgFigueiredo
23
56 kgFonte
24
60 kg
Weight (KG) →
Result →
78
56
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | MARTÍNEZ Daniel Felipe | 63 |
2 | EVENEPOEL Remco | 61 |
3 | LEKNESSUND Andreas | 72 |
4 | KUSS Sepp | 61 |
5 | TIVANI German Nicolás | 67 |
6 | VAN AERT Wout | 78 |
8 | HEALY Ben | 65 |
9 | URIANSTAD BUGGE Martin | 61 |
11 | BAYER Tobias | 71 |
12 | SALGUEIRO Carlos Miguel | 68 |
13 | SHAW James | 63 |
14 | HIGUITA Sergio | 57 |
15 | PIDCOCK Thomas | 58 |
16 | LEEMREIZE Gijs | 66 |
17 | ABRAHAMSEN Jonas | 78 |
18 | TRATNIK Jan | 67 |
19 | SCARONI Christian | 63 |
20 | KNOX James | 58 |
21 | NUNES Hugo | 64 |
22 | MAYRHOFER Marius | 70 |
23 | FIGUEIREDO Frederico | 56 |
24 | FONTE César | 60 |