Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Ignatiev
1
67 kgBrutt
3
70 kgDuggan
5
60 kgEstrada
8
70 kgPeterson
10
70 kgBelda
12
53 kgKlimov
13
69 kgEuser
18
56 kgDe Greef
19
77 kgPiedra
23
61 kgCornu
25
78 kgŠtybar
31
68 kgRovny
33
62 kgNeyens
36
74 kgSerov
42
77 kgVantornout
46
69 kgLewis
47
65 kgPauwels
49
60 kgBaugnies
51
69 kgVervecken
52
78 kgGarcía Acosta
55
76 kgRoldán
57
61 kgTrusov
60
77 kgCarrasco
62
56 kg
1
67 kgBrutt
3
70 kgDuggan
5
60 kgEstrada
8
70 kgPeterson
10
70 kgBelda
12
53 kgKlimov
13
69 kgEuser
18
56 kgDe Greef
19
77 kgPiedra
23
61 kgCornu
25
78 kgŠtybar
31
68 kgRovny
33
62 kgNeyens
36
74 kgSerov
42
77 kgVantornout
46
69 kgLewis
47
65 kgPauwels
49
60 kgBaugnies
51
69 kgVervecken
52
78 kgGarcía Acosta
55
76 kgRoldán
57
61 kgTrusov
60
77 kgCarrasco
62
56 kg
Weight (KG) →
Result →
78
53
1
62
# | Rider | Weight (KG) |
---|---|---|
1 | IGNATIEV Mikhail | 67 |
3 | BRUTT Pavel | 70 |
5 | DUGGAN Timothy | 60 |
8 | ESTRADA Juan Javier | 70 |
10 | PETERSON Tom | 70 |
12 | BELDA David | 53 |
13 | KLIMOV Sergey | 69 |
18 | EUSER Lucas | 56 |
19 | DE GREEF Francis | 77 |
23 | PIEDRA Antonio | 61 |
25 | CORNU Dominique | 78 |
31 | ŠTYBAR Zdeněk | 68 |
33 | ROVNY Ivan | 62 |
36 | NEYENS Maarten | 74 |
42 | SEROV Alexander | 77 |
46 | VANTORNOUT Klaas | 69 |
47 | LEWIS Craig | 65 |
49 | PAUWELS Kevin | 60 |
51 | BAUGNIES Jérôme | 69 |
52 | VERVECKEN Erwin | 78 |
55 | GARCÍA ACOSTA José Vicente | 76 |
57 | ROLDÁN Jose Luis | 61 |
60 | TRUSOV Nikolay | 77 |
62 | CARRASCO Sergio | 56 |