Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 31
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Boom
1
75 kgPoels
3
66 kgBisolti
5
58 kgRybakov
7
65 kgvan Garderen
12
72 kgClaeys
18
77 kgPauwels
23
60 kgChacón
29
70 kgHonig
36
61 kgAdams
37
63 kgVandousselaere
39
71 kgSolomennikov
43
72 kgPirazzi
49
62 kgŠtybar
54
68 kgvan Poppel
55
78 kgVervecken
57
78 kgMeeusen
58
62 kgMateos
60
72 kgGarcía
62
80 kgPieters
63
73 kg
1
75 kgPoels
3
66 kgBisolti
5
58 kgRybakov
7
65 kgvan Garderen
12
72 kgClaeys
18
77 kgPauwels
23
60 kgChacón
29
70 kgHonig
36
61 kgAdams
37
63 kgVandousselaere
39
71 kgSolomennikov
43
72 kgPirazzi
49
62 kgŠtybar
54
68 kgvan Poppel
55
78 kgVervecken
57
78 kgMeeusen
58
62 kgMateos
60
72 kgGarcía
62
80 kgPieters
63
73 kg
Weight (KG) →
Result →
80
58
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | BOOM Lars | 75 |
3 | POELS Wout | 66 |
5 | BISOLTI Alessandro | 58 |
7 | RYBAKOV Alexander | 65 |
12 | VAN GARDEREN Tejay | 72 |
18 | CLAEYS Dimitri | 77 |
23 | PAUWELS Kevin | 60 |
29 | CHACÓN Javier | 70 |
36 | HONIG Reinier | 61 |
37 | ADAMS Joeri | 63 |
39 | VANDOUSSELAERE Sven | 71 |
43 | SOLOMENNIKOV Andrei | 72 |
49 | PIRAZZI Stefano | 62 |
54 | ŠTYBAR Zdeněk | 68 |
55 | VAN POPPEL Boy | 78 |
57 | VERVECKEN Erwin | 78 |
58 | MEEUSEN Tom | 62 |
60 | MATEOS Rafael | 72 |
62 | GARCÍA Francisco Tomás | 80 |
63 | PIETERS Sibrecht | 73 |