Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.2 * weight - 169
This means that on average for every extra kilogram weight a rider loses 3.2 positions in the result.
Guamá
1
61 kgWilmann
5
69 kgOyarzún
7
66 kgArseno
9
71 kgRamos
16
65 kgCepeda
17
61 kgAlmonacid
27
60 kgAffonso
33
63 kgNazaret
36
65 kgPrado
39
65 kgAmbrose
51
66 kgTræen
52
63 kgMonteiro
59
77 kgClancy
61
63 kgMartins
64
70 kgStrobel
67
71 kgQuishpe
70
70 kgGlasspool
72
73.9 kgPanizo
82
72 kgMansilla
84
68 kgDilley
85
72 kg
1
61 kgWilmann
5
69 kgOyarzún
7
66 kgArseno
9
71 kgRamos
16
65 kgCepeda
17
61 kgAlmonacid
27
60 kgAffonso
33
63 kgNazaret
36
65 kgPrado
39
65 kgAmbrose
51
66 kgTræen
52
63 kgMonteiro
59
77 kgClancy
61
63 kgMartins
64
70 kgStrobel
67
71 kgQuishpe
70
70 kgGlasspool
72
73.9 kgPanizo
82
72 kgMansilla
84
68 kgDilley
85
72 kg
Weight (KG) →
Result →
77
60
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | GUAMÁ Byron | 61 |
5 | WILMANN Frederik | 69 |
7 | OYARZÚN Carlos Iván | 66 |
9 | ARSENO Alex | 71 |
16 | RAMOS Kléber | 65 |
17 | CEPEDA Jefferson Alveiro | 61 |
27 | ALMONACID Patricio | 60 |
33 | AFFONSO Murilo | 63 |
36 | NAZARET Magno | 65 |
39 | PRADO Ignacio de Jesús | 65 |
51 | AMBROSE Scott | 66 |
52 | TRÆEN Torstein | 63 |
59 | MONTEIRO Gideoni Rodrigues | 77 |
61 | CLANCY Stephen | 63 |
64 | MARTINS Uri | 70 |
67 | STROBEL Simon | 71 |
70 | QUISHPE Carlos Eduardo | 70 |
72 | GLASSPOOL James | 73.9 |
82 | PANIZO Gregolry | 72 |
84 | MANSILLA Luis Miguel | 68 |
85 | DILLEY Benjamin | 72 |