Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 137
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Oyarzún
1
66 kgWilmann
4
69 kgGuamá
6
61 kgCepeda
10
61 kgArseno
20
71 kgAlmonacid
28
60 kgRamos
30
65 kgNazaret
39
65 kgAffonso
40
63 kgTræen
41
63 kgStrobel
42
71 kgMartins
43
70 kgPrado
44
65 kgQuishpe
46
70 kgMonteiro
67
77 kgGlasspool
75
73.9 kgClancy
76
63 kgDilley
78
72 kgAmbrose
82
66 kgPanizo
88
72 kgMansilla
89
68 kg
1
66 kgWilmann
4
69 kgGuamá
6
61 kgCepeda
10
61 kgArseno
20
71 kgAlmonacid
28
60 kgRamos
30
65 kgNazaret
39
65 kgAffonso
40
63 kgTræen
41
63 kgStrobel
42
71 kgMartins
43
70 kgPrado
44
65 kgQuishpe
46
70 kgMonteiro
67
77 kgGlasspool
75
73.9 kgClancy
76
63 kgDilley
78
72 kgAmbrose
82
66 kgPanizo
88
72 kgMansilla
89
68 kg
Weight (KG) →
Result →
77
60
1
89
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | OYARZÚN Carlos Iván | 66 |
| 4 | WILMANN Frederik | 69 |
| 6 | GUAMÁ Byron | 61 |
| 10 | CEPEDA Jefferson Alveiro | 61 |
| 20 | ARSENO Alex | 71 |
| 28 | ALMONACID Patricio | 60 |
| 30 | RAMOS Kléber | 65 |
| 39 | NAZARET Magno | 65 |
| 40 | AFFONSO Murilo | 63 |
| 41 | TRÆEN Torstein | 63 |
| 42 | STROBEL Simon | 71 |
| 43 | MARTINS Uri | 70 |
| 44 | PRADO Ignacio de Jesús | 65 |
| 46 | QUISHPE Carlos Eduardo | 70 |
| 67 | MONTEIRO Gideoni Rodrigues | 77 |
| 75 | GLASSPOOL James | 73.9 |
| 76 | CLANCY Stephen | 63 |
| 78 | DILLEY Benjamin | 72 |
| 82 | AMBROSE Scott | 66 |
| 88 | PANIZO Gregolry | 72 |
| 89 | MANSILLA Luis Miguel | 68 |