Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Guamá
1
61 kgMonteiro
3
77 kgArseno
11
71 kgOyarzún
13
66 kgPrado
32
65 kgGlasspool
35
73.9 kgNazaret
41
65 kgCepeda
42
61 kgMartins
43
70 kgWilmann
44
69 kgClancy
45
63 kgRamos
56
65 kgStrobel
59
71 kgAmbrose
63
66 kgTræen
64
63 kgMansilla
66
68 kgAlmonacid
67
60 kgAffonso
73
63 kgQuishpe
79
70 kgPanizo
81
72 kgDilley
86
72 kg
1
61 kgMonteiro
3
77 kgArseno
11
71 kgOyarzún
13
66 kgPrado
32
65 kgGlasspool
35
73.9 kgNazaret
41
65 kgCepeda
42
61 kgMartins
43
70 kgWilmann
44
69 kgClancy
45
63 kgRamos
56
65 kgStrobel
59
71 kgAmbrose
63
66 kgTræen
64
63 kgMansilla
66
68 kgAlmonacid
67
60 kgAffonso
73
63 kgQuishpe
79
70 kgPanizo
81
72 kgDilley
86
72 kg
Weight (KG) →
Result →
77
60
1
86
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | GUAMÁ Byron | 61 |
| 3 | MONTEIRO Gideoni Rodrigues | 77 |
| 11 | ARSENO Alex | 71 |
| 13 | OYARZÚN Carlos Iván | 66 |
| 32 | PRADO Ignacio de Jesús | 65 |
| 35 | GLASSPOOL James | 73.9 |
| 41 | NAZARET Magno | 65 |
| 42 | CEPEDA Jefferson Alveiro | 61 |
| 43 | MARTINS Uri | 70 |
| 44 | WILMANN Frederik | 69 |
| 45 | CLANCY Stephen | 63 |
| 56 | RAMOS Kléber | 65 |
| 59 | STROBEL Simon | 71 |
| 63 | AMBROSE Scott | 66 |
| 64 | TRÆEN Torstein | 63 |
| 66 | MANSILLA Luis Miguel | 68 |
| 67 | ALMONACID Patricio | 60 |
| 73 | AFFONSO Murilo | 63 |
| 79 | QUISHPE Carlos Eduardo | 70 |
| 81 | PANIZO Gregolry | 72 |
| 86 | DILLEY Benjamin | 72 |