Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 101
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Guamá
1
61 kgArseno
3
71 kgWilmann
8
69 kgCepeda
13
61 kgRamos
23
65 kgPrado
27
65 kgQuishpe
37
70 kgAffonso
38
63 kgAmbrose
43
66 kgMonteiro
49
77 kgClancy
50
63 kgOyarzún
59
66 kgNazaret
61
65 kgTræen
65
63 kgAlmonacid
68
60 kgGlasspool
77
73.9 kgStrobel
81
71 kgMansilla
86
68 kgDilley
87
72 kgMartins
88
70 kgPanizo
90
72 kg
1
61 kgArseno
3
71 kgWilmann
8
69 kgCepeda
13
61 kgRamos
23
65 kgPrado
27
65 kgQuishpe
37
70 kgAffonso
38
63 kgAmbrose
43
66 kgMonteiro
49
77 kgClancy
50
63 kgOyarzún
59
66 kgNazaret
61
65 kgTræen
65
63 kgAlmonacid
68
60 kgGlasspool
77
73.9 kgStrobel
81
71 kgMansilla
86
68 kgDilley
87
72 kgMartins
88
70 kgPanizo
90
72 kg
Weight (KG) →
Result →
77
60
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | GUAMÁ Byron | 61 |
3 | ARSENO Alex | 71 |
8 | WILMANN Frederik | 69 |
13 | CEPEDA Jefferson Alveiro | 61 |
23 | RAMOS Kléber | 65 |
27 | PRADO Ignacio de Jesús | 65 |
37 | QUISHPE Carlos Eduardo | 70 |
38 | AFFONSO Murilo | 63 |
43 | AMBROSE Scott | 66 |
49 | MONTEIRO Gideoni Rodrigues | 77 |
50 | CLANCY Stephen | 63 |
59 | OYARZÚN Carlos Iván | 66 |
61 | NAZARET Magno | 65 |
65 | TRÆEN Torstein | 63 |
68 | ALMONACID Patricio | 60 |
77 | GLASSPOOL James | 73.9 |
81 | STROBEL Simon | 71 |
86 | MANSILLA Luis Miguel | 68 |
87 | DILLEY Benjamin | 72 |
88 | MARTINS Uri | 70 |
90 | PANIZO Gregolry | 72 |