Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 62
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Affonso
1
63 kgRamos
2
65 kgMédici
8
70 kgGuamá
9
61 kgHenttala
13
73 kgCorella
14
75 kgAndriato
22
67 kgMachado Silva
23
63 kgCherhal
34
60 kgStević
37
66 kgRincon Diaz
43
61 kgNicácio
48
72 kgCepeda
50
61 kgPeron
57
70 kgde Keijzer
59
72.6 kgWilliams
66
75 kgGlasspool
70
73.9 kg
1
63 kgRamos
2
65 kgMédici
8
70 kgGuamá
9
61 kgHenttala
13
73 kgCorella
14
75 kgAndriato
22
67 kgMachado Silva
23
63 kgCherhal
34
60 kgStević
37
66 kgRincon Diaz
43
61 kgNicácio
48
72 kgCepeda
50
61 kgPeron
57
70 kgde Keijzer
59
72.6 kgWilliams
66
75 kgGlasspool
70
73.9 kg
Weight (KG) →
Result →
75
60
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | AFFONSO Murilo | 63 |
2 | RAMOS Kléber | 65 |
8 | MÉDICI Matías | 70 |
9 | GUAMÁ Byron | 61 |
13 | HENTTALA Joonas | 73 |
14 | CORELLA Rene | 75 |
22 | ANDRIATO Rafael | 67 |
23 | MACHADO SILVA Gabriel | 63 |
34 | CHERHAL Corentin | 60 |
37 | STEVIĆ Ivan | 66 |
43 | RINCON DIAZ Wilson Ramiro | 61 |
48 | NICÁCIO Pedro | 72 |
50 | CEPEDA Jefferson Alveiro | 61 |
57 | PERON Andrea | 70 |
59 | DE KEIJZER Gerd | 72.6 |
66 | WILLIAMS Christopher | 75 |
70 | GLASSPOOL James | 73.9 |