Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 19
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Affonso
1
63 kgRamos
2
65 kgAndriato
5
67 kgHenttala
6
73 kgGuamá
8
61 kgCorella
10
75 kgMédici
11
70 kgNicácio
17
72 kgPita
20
67 kgChaman
27
74 kgMachado Silva
34
63 kgCherhal
35
60 kgStević
40
66 kgde Keijzer
42
72.6 kgRincon Diaz
64
61 kgWilliams
70
75 kgPeron
71
70 kgGlasspool
75
73.9 kgCepeda
76
61 kg
1
63 kgRamos
2
65 kgAndriato
5
67 kgHenttala
6
73 kgGuamá
8
61 kgCorella
10
75 kgMédici
11
70 kgNicácio
17
72 kgPita
20
67 kgChaman
27
74 kgMachado Silva
34
63 kgCherhal
35
60 kgStević
40
66 kgde Keijzer
42
72.6 kgRincon Diaz
64
61 kgWilliams
70
75 kgPeron
71
70 kgGlasspool
75
73.9 kgCepeda
76
61 kg
Weight (KG) →
Result →
75
60
1
76
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | AFFONSO Murilo | 63 |
| 2 | RAMOS Kléber | 65 |
| 5 | ANDRIATO Rafael | 67 |
| 6 | HENTTALA Joonas | 73 |
| 8 | GUAMÁ Byron | 61 |
| 10 | CORELLA Rene | 75 |
| 11 | MÉDICI Matías | 70 |
| 17 | NICÁCIO Pedro | 72 |
| 20 | PITA Cristian David | 67 |
| 27 | CHAMAN Lauro Cesar | 74 |
| 34 | MACHADO SILVA Gabriel | 63 |
| 35 | CHERHAL Corentin | 60 |
| 40 | STEVIĆ Ivan | 66 |
| 42 | DE KEIJZER Gerd | 72.6 |
| 64 | RINCON DIAZ Wilson Ramiro | 61 |
| 70 | WILLIAMS Christopher | 75 |
| 71 | PERON Andrea | 70 |
| 75 | GLASSPOOL James | 73.9 |
| 76 | CEPEDA Jefferson Alveiro | 61 |