Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 60
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Guamá
1
61 kgStević
3
66 kgPeron
4
70 kgAndriato
5
67 kgPita
8
67 kgRamos
9
65 kgHenttala
12
73 kgCorella
21
75 kgMédici
25
70 kgAffonso
27
63 kgRincon Diaz
28
61 kgMachado Silva
34
63 kgChaman
38
74 kgCherhal
46
60 kgWilliams
49
75 kgCepeda
51
61 kgNicácio
63
72 kgde Keijzer
76
72.6 kgGlasspool
77
73.9 kg
1
61 kgStević
3
66 kgPeron
4
70 kgAndriato
5
67 kgPita
8
67 kgRamos
9
65 kgHenttala
12
73 kgCorella
21
75 kgMédici
25
70 kgAffonso
27
63 kgRincon Diaz
28
61 kgMachado Silva
34
63 kgChaman
38
74 kgCherhal
46
60 kgWilliams
49
75 kgCepeda
51
61 kgNicácio
63
72 kgde Keijzer
76
72.6 kgGlasspool
77
73.9 kg
Weight (KG) →
Result →
75
60
1
77
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | GUAMÁ Byron | 61 |
| 3 | STEVIĆ Ivan | 66 |
| 4 | PERON Andrea | 70 |
| 5 | ANDRIATO Rafael | 67 |
| 8 | PITA Cristian David | 67 |
| 9 | RAMOS Kléber | 65 |
| 12 | HENTTALA Joonas | 73 |
| 21 | CORELLA Rene | 75 |
| 25 | MÉDICI Matías | 70 |
| 27 | AFFONSO Murilo | 63 |
| 28 | RINCON DIAZ Wilson Ramiro | 61 |
| 34 | MACHADO SILVA Gabriel | 63 |
| 38 | CHAMAN Lauro Cesar | 74 |
| 46 | CHERHAL Corentin | 60 |
| 49 | WILLIAMS Christopher | 75 |
| 51 | CEPEDA Jefferson Alveiro | 61 |
| 63 | NICÁCIO Pedro | 72 |
| 76 | DE KEIJZER Gerd | 72.6 |
| 77 | GLASSPOOL James | 73.9 |