Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.9 * weight - 95
This means that on average for every extra kilogram weight a rider loses 1.9 positions in the result.
Cepeda
1
61 kgAffonso
4
63 kgRincon Diaz
9
61 kgMédici
10
70 kgRamos
12
65 kgGuamá
14
61 kgMachado Silva
19
63 kgCorella
22
75 kgHenttala
24
73 kgPita
30
67 kgChaman
31
74 kgCherhal
46
60 kgWilliams
47
75 kgPeron
48
70 kgAndriato
50
67 kgGlasspool
59
73.9 kgde Keijzer
60
72.6 kgNicácio
67
72 kgStević
70
66 kg
1
61 kgAffonso
4
63 kgRincon Diaz
9
61 kgMédici
10
70 kgRamos
12
65 kgGuamá
14
61 kgMachado Silva
19
63 kgCorella
22
75 kgHenttala
24
73 kgPita
30
67 kgChaman
31
74 kgCherhal
46
60 kgWilliams
47
75 kgPeron
48
70 kgAndriato
50
67 kgGlasspool
59
73.9 kgde Keijzer
60
72.6 kgNicácio
67
72 kgStević
70
66 kg
Weight (KG) →
Result →
75
60
1
70
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | CEPEDA Jefferson Alveiro | 61 |
| 4 | AFFONSO Murilo | 63 |
| 9 | RINCON DIAZ Wilson Ramiro | 61 |
| 10 | MÉDICI Matías | 70 |
| 12 | RAMOS Kléber | 65 |
| 14 | GUAMÁ Byron | 61 |
| 19 | MACHADO SILVA Gabriel | 63 |
| 22 | CORELLA Rene | 75 |
| 24 | HENTTALA Joonas | 73 |
| 30 | PITA Cristian David | 67 |
| 31 | CHAMAN Lauro Cesar | 74 |
| 46 | CHERHAL Corentin | 60 |
| 47 | WILLIAMS Christopher | 75 |
| 48 | PERON Andrea | 70 |
| 50 | ANDRIATO Rafael | 67 |
| 59 | GLASSPOOL James | 73.9 |
| 60 | DE KEIJZER Gerd | 72.6 |
| 67 | NICÁCIO Pedro | 72 |
| 70 | STEVIĆ Ivan | 66 |