Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 42
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Sijmens
1
69 kgSchumacher
2
71 kgWynants
3
74 kgRenders
4
63 kgHeppner
6
69 kgKleynen
7
72 kgten Dam
9
67 kgRetschke
12
66 kgVoskamp
14
75 kgMonfort
18
66 kgMaaskant
21
76 kgSieberg
25
80 kgLagutin
27
68 kgLeezer
31
76 kgReus
38
70 kgMertens
41
67 kgRooijakkers
43
68 kgPoitschke
46
73 kgAl
48
72 kgVeuchelen
50
75 kg
1
69 kgSchumacher
2
71 kgWynants
3
74 kgRenders
4
63 kgHeppner
6
69 kgKleynen
7
72 kgten Dam
9
67 kgRetschke
12
66 kgVoskamp
14
75 kgMonfort
18
66 kgMaaskant
21
76 kgSieberg
25
80 kgLagutin
27
68 kgLeezer
31
76 kgReus
38
70 kgMertens
41
67 kgRooijakkers
43
68 kgPoitschke
46
73 kgAl
48
72 kgVeuchelen
50
75 kg
Weight (KG) →
Result →
80
63
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | SIJMENS Nico | 69 |
2 | SCHUMACHER Stefan | 71 |
3 | WYNANTS Maarten | 74 |
4 | RENDERS Sven | 63 |
6 | HEPPNER Jens | 69 |
7 | KLEYNEN Steven | 72 |
9 | TEN DAM Laurens | 67 |
12 | RETSCHKE Robert | 66 |
14 | VOSKAMP Bart | 75 |
18 | MONFORT Maxime | 66 |
21 | MAASKANT Martijn | 76 |
25 | SIEBERG Marcel | 80 |
27 | LAGUTIN Sergey | 68 |
31 | LEEZER Tom | 76 |
38 | REUS Kai | 70 |
41 | MERTENS Pieter | 67 |
43 | ROOIJAKKERS Piet | 68 |
46 | POITSCHKE Enrico | 73 |
48 | AL Thijs | 72 |
50 | VEUCHELEN Frederik | 75 |