Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Maaskant
2
76 kgScheirlinckx
3
67 kgGoesinnen
5
75 kgKleynen
7
72 kgAbakoumov
8
68 kgLagutin
9
68 kgSijmens
10
69 kgGesink
14
70 kgLangeveld
16
67 kgStamsnijder
17
76 kgVanheule
18
76 kgReus
19
70 kgSteensen
20
65 kgSchmidt
21
73 kgvan Leijen
22
73 kgDe Schrooder
24
61 kgHonig
26
61 kg
2
76 kgScheirlinckx
3
67 kgGoesinnen
5
75 kgKleynen
7
72 kgAbakoumov
8
68 kgLagutin
9
68 kgSijmens
10
69 kgGesink
14
70 kgLangeveld
16
67 kgStamsnijder
17
76 kgVanheule
18
76 kgReus
19
70 kgSteensen
20
65 kgSchmidt
21
73 kgvan Leijen
22
73 kgDe Schrooder
24
61 kgHonig
26
61 kg
Weight (KG) →
Result →
76
61
2
26
# | Rider | Weight (KG) |
---|---|---|
2 | MAASKANT Martijn | 76 |
3 | SCHEIRLINCKX Bert | 67 |
5 | GOESINNEN Floris | 75 |
7 | KLEYNEN Steven | 72 |
8 | ABAKOUMOV Igor | 68 |
9 | LAGUTIN Sergey | 68 |
10 | SIJMENS Nico | 69 |
14 | GESINK Robert | 70 |
16 | LANGEVELD Sebastian | 67 |
17 | STAMSNIJDER Tom | 76 |
18 | VANHEULE Bart | 76 |
19 | REUS Kai | 70 |
20 | STEENSEN André | 65 |
21 | SCHMIDT Torsten | 73 |
22 | VAN LEIJEN Joost | 73 |
24 | DE SCHROODER Benny | 61 |
26 | HONIG Reinier | 61 |