Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 31
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Freire
1
63 kgRubiera
2
69 kgBrochard
3
68 kgMartín Perdiguero
4
63 kgLombardi
6
73 kgColombo
7
70 kgPiepoli
8
54 kgFernández
9
61 kgBasso
11
70 kgBeloki
13
68 kgGarmendia
14
68 kgBramati
16
72 kgDean
17
72 kgRodrigues
18
68 kgGonzález de Galdeano
19
73 kgCasarotto
20
74 kgEkimov
21
69 kgTrenti
22
68 kgGutiérrez
24
71 kgZubeldia
25
68 kg
1
63 kgRubiera
2
69 kgBrochard
3
68 kgMartín Perdiguero
4
63 kgLombardi
6
73 kgColombo
7
70 kgPiepoli
8
54 kgFernández
9
61 kgBasso
11
70 kgBeloki
13
68 kgGarmendia
14
68 kgBramati
16
72 kgDean
17
72 kgRodrigues
18
68 kgGonzález de Galdeano
19
73 kgCasarotto
20
74 kgEkimov
21
69 kgTrenti
22
68 kgGutiérrez
24
71 kgZubeldia
25
68 kg
Weight (KG) →
Result →
74
54
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | FREIRE Óscar | 63 |
2 | RUBIERA José Luis | 69 |
3 | BROCHARD Laurent | 68 |
4 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
6 | LOMBARDI Giovanni | 73 |
7 | COLOMBO Gabriele | 70 |
8 | PIEPOLI Leonardo | 54 |
9 | FERNÁNDEZ Bingen | 61 |
11 | BASSO Ivan | 70 |
13 | BELOKI Joseba | 68 |
14 | GARMENDIA Aitor | 68 |
16 | BRAMATI Davide | 72 |
17 | DEAN Julian | 72 |
18 | RODRIGUES Orlando Sergio | 68 |
19 | GONZÁLEZ DE GALDEANO Igor | 73 |
20 | CASAROTTO Davide | 74 |
21 | EKIMOV Viatcheslav | 69 |
22 | TRENTI Guido | 68 |
24 | GUTIÉRREZ José Iván | 71 |
25 | ZUBELDIA Haimar | 68 |