Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Petacchi
1
70 kgEdo
2
64 kgSerrano
3
67 kgPiepoli
4
54 kgValverde
5
61 kgFontanelli
6
68 kgPantani
7
58 kgArtetxe
8
61 kgSvorada
10
76 kgSimoni
11
59 kgBrochard
12
68 kgJufré
13
65 kgMancebo
14
64 kgAlbasini
16
65 kgBeltrán
17
60 kgFerrío
18
51 kgUsov
19
63 kgDomínguez
20
64 kgJeker
21
72 kgGarcía Quesada
22
63 kgKarpets
23
79 kgOriol
24
65 kg
1
70 kgEdo
2
64 kgSerrano
3
67 kgPiepoli
4
54 kgValverde
5
61 kgFontanelli
6
68 kgPantani
7
58 kgArtetxe
8
61 kgSvorada
10
76 kgSimoni
11
59 kgBrochard
12
68 kgJufré
13
65 kgMancebo
14
64 kgAlbasini
16
65 kgBeltrán
17
60 kgFerrío
18
51 kgUsov
19
63 kgDomínguez
20
64 kgJeker
21
72 kgGarcía Quesada
22
63 kgKarpets
23
79 kgOriol
24
65 kg
Weight (KG) →
Result →
79
51
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | PETACCHI Alessandro | 70 |
2 | EDO Ángel | 64 |
3 | SERRANO Ricardo | 67 |
4 | PIEPOLI Leonardo | 54 |
5 | VALVERDE Alejandro | 61 |
6 | FONTANELLI Fabiano | 68 |
7 | PANTANI Marco | 58 |
8 | ARTETXE Mikel | 61 |
10 | SVORADA Ján | 76 |
11 | SIMONI Gilberto | 59 |
12 | BROCHARD Laurent | 68 |
13 | JUFRÉ Josep | 65 |
14 | MANCEBO Francisco | 64 |
16 | ALBASINI Michael | 65 |
17 | BELTRÁN Manuel | 60 |
18 | FERRÍO Jorge | 51 |
19 | USOV Alexandre | 63 |
20 | DOMÍNGUEZ Juan Carlos | 64 |
21 | JEKER Fabian | 72 |
22 | GARCÍA QUESADA Carlos | 63 |
23 | KARPETS Vladimir | 79 |
24 | ORIOL Christophe | 65 |