Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Piepoli
1
54 kgSimoni
2
59 kgBeltrán
3
60 kgJufré
4
65 kgGarcía Quesada
5
63 kgKarpets
6
79 kgJeker
7
72 kgDomínguez
8
64 kgMøller
10
70 kgMancebo
11
64 kgPetacchi
12
70 kgGarcía Acosta
13
76 kgFerrío
14
51 kgOriol
15
65 kgFarazijn
16
69 kgBlanco
17
66 kgValverde
18
61 kgPiccoli
21
64 kg
1
54 kgSimoni
2
59 kgBeltrán
3
60 kgJufré
4
65 kgGarcía Quesada
5
63 kgKarpets
6
79 kgJeker
7
72 kgDomínguez
8
64 kgMøller
10
70 kgMancebo
11
64 kgPetacchi
12
70 kgGarcía Acosta
13
76 kgFerrío
14
51 kgOriol
15
65 kgFarazijn
16
69 kgBlanco
17
66 kgValverde
18
61 kgPiccoli
21
64 kg
Weight (KG) →
Result →
79
51
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | PIEPOLI Leonardo | 54 |
2 | SIMONI Gilberto | 59 |
3 | BELTRÁN Manuel | 60 |
4 | JUFRÉ Josep | 65 |
5 | GARCÍA QUESADA Carlos | 63 |
6 | KARPETS Vladimir | 79 |
7 | JEKER Fabian | 72 |
8 | DOMÍNGUEZ Juan Carlos | 64 |
10 | MØLLER Claus Michael | 70 |
11 | MANCEBO Francisco | 64 |
12 | PETACCHI Alessandro | 70 |
13 | GARCÍA ACOSTA José Vicente | 76 |
14 | FERRÍO Jorge | 51 |
15 | ORIOL Christophe | 65 |
16 | FARAZIJN Peter | 69 |
17 | BLANCO Santiago | 66 |
18 | VALVERDE Alejandro | 61 |
21 | PICCOLI Mariano | 64 |