Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Petacchi
1
70 kgPiepoli
2
54 kgSimoni
3
59 kgEdo
4
64 kgBeltrán
5
60 kgJufré
6
65 kgFontanelli
7
68 kgArtetxe
8
61 kgGarcía Quesada
9
63 kgKarpets
10
79 kgMancebo
11
64 kgPantani
12
58 kgBrochard
13
68 kgJeker
14
72 kgDomínguez
16
64 kgSerrano
17
67 kgFerrío
18
51 kgBayarri
21
67 kgMøller
22
70 kgArrieta
23
68 kgGarcía Acosta
24
76 kgOriol
25
65 kg
1
70 kgPiepoli
2
54 kgSimoni
3
59 kgEdo
4
64 kgBeltrán
5
60 kgJufré
6
65 kgFontanelli
7
68 kgArtetxe
8
61 kgGarcía Quesada
9
63 kgKarpets
10
79 kgMancebo
11
64 kgPantani
12
58 kgBrochard
13
68 kgJeker
14
72 kgDomínguez
16
64 kgSerrano
17
67 kgFerrío
18
51 kgBayarri
21
67 kgMøller
22
70 kgArrieta
23
68 kgGarcía Acosta
24
76 kgOriol
25
65 kg
Weight (KG) →
Result →
79
51
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | PETACCHI Alessandro | 70 |
2 | PIEPOLI Leonardo | 54 |
3 | SIMONI Gilberto | 59 |
4 | EDO Ángel | 64 |
5 | BELTRÁN Manuel | 60 |
6 | JUFRÉ Josep | 65 |
7 | FONTANELLI Fabiano | 68 |
8 | ARTETXE Mikel | 61 |
9 | GARCÍA QUESADA Carlos | 63 |
10 | KARPETS Vladimir | 79 |
11 | MANCEBO Francisco | 64 |
12 | PANTANI Marco | 58 |
13 | BROCHARD Laurent | 68 |
14 | JEKER Fabian | 72 |
16 | DOMÍNGUEZ Juan Carlos | 64 |
17 | SERRANO Ricardo | 67 |
18 | FERRÍO Jorge | 51 |
21 | BAYARRI Gonzalo | 67 |
22 | MØLLER Claus Michael | 70 |
23 | ARRIETA José Luis | 68 |
24 | GARCÍA ACOSTA José Vicente | 76 |
25 | ORIOL Christophe | 65 |