Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Edo
1
64 kgPetacchi
2
70 kgPiepoli
3
54 kgFontanelli
4
68 kgPantani
5
58 kgSerrano
6
67 kgArtetxe
7
61 kgValverde
8
61 kgSimoni
9
59 kgMancebo
10
64 kgAlbasini
11
65 kgBeltrán
12
60 kgJufré
13
65 kgJeker
14
72 kgGarcía Quesada
15
63 kgDomínguez
16
64 kgKarpets
17
79 kgFerrío
19
51 kgBrochard
20
68 kgNoval
23
71 kgSvorada
24
76 kgAstarloza
25
72 kg
1
64 kgPetacchi
2
70 kgPiepoli
3
54 kgFontanelli
4
68 kgPantani
5
58 kgSerrano
6
67 kgArtetxe
7
61 kgValverde
8
61 kgSimoni
9
59 kgMancebo
10
64 kgAlbasini
11
65 kgBeltrán
12
60 kgJufré
13
65 kgJeker
14
72 kgGarcía Quesada
15
63 kgDomínguez
16
64 kgKarpets
17
79 kgFerrío
19
51 kgBrochard
20
68 kgNoval
23
71 kgSvorada
24
76 kgAstarloza
25
72 kg
Weight (KG) →
Result →
79
51
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | EDO Ángel | 64 |
2 | PETACCHI Alessandro | 70 |
3 | PIEPOLI Leonardo | 54 |
4 | FONTANELLI Fabiano | 68 |
5 | PANTANI Marco | 58 |
6 | SERRANO Ricardo | 67 |
7 | ARTETXE Mikel | 61 |
8 | VALVERDE Alejandro | 61 |
9 | SIMONI Gilberto | 59 |
10 | MANCEBO Francisco | 64 |
11 | ALBASINI Michael | 65 |
12 | BELTRÁN Manuel | 60 |
13 | JUFRÉ Josep | 65 |
14 | JEKER Fabian | 72 |
15 | GARCÍA QUESADA Carlos | 63 |
16 | DOMÍNGUEZ Juan Carlos | 64 |
17 | KARPETS Vladimir | 79 |
19 | FERRÍO Jorge | 51 |
20 | BROCHARD Laurent | 68 |
23 | NOVAL Benjamín | 71 |
24 | SVORADA Ján | 76 |
25 | ASTARLOZA Mikel | 72 |