Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Shalunov
1
70 kgEzquerra
2
68 kgJules
3
64 kgHivert
4
62 kgBoudat
5
70 kgPrades
6
63 kgPinto
7
58 kgSilva
8
65 kgPuppio
9
75 kgSepúlveda
10
59 kgAngulo
12
67 kgReyes
14
55 kgGarel
15
77 kgTaaramäe
16
73 kgChernetski
17
63 kgMoreno
18
63 kgGrigorev
19
73 kgSoto
20
66 kgRolland
21
70 kgGuerin
23
64 kgRubio
24
81 kg
1
70 kgEzquerra
2
68 kgJules
3
64 kgHivert
4
62 kgBoudat
5
70 kgPrades
6
63 kgPinto
7
58 kgSilva
8
65 kgPuppio
9
75 kgSepúlveda
10
59 kgAngulo
12
67 kgReyes
14
55 kgGarel
15
77 kgTaaramäe
16
73 kgChernetski
17
63 kgMoreno
18
63 kgGrigorev
19
73 kgSoto
20
66 kgRolland
21
70 kgGuerin
23
64 kgRubio
24
81 kg
Weight (KG) →
Result →
81
55
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | SHALUNOV Evgeny | 70 |
2 | EZQUERRA Jesús | 68 |
3 | JULES Justin | 64 |
4 | HIVERT Jonathan | 62 |
5 | BOUDAT Thomas | 70 |
6 | PRADES Eduard | 63 |
7 | PINTO Edgar | 58 |
8 | SILVA Rafael | 65 |
9 | PUPPIO Antonio | 75 |
10 | SEPÚLVEDA Eduardo | 59 |
12 | ANGULO Antonio | 67 |
14 | REYES Aldemar | 55 |
15 | GAREL Adrien | 77 |
16 | TAARAMÄE Rein | 73 |
17 | CHERNETSKI Sergei | 63 |
18 | MORENO Javier | 63 |
19 | GRIGOREV Aleksandr | 73 |
20 | SOTO Antonio Jesús | 66 |
21 | ROLLAND Pierre | 70 |
23 | GUERIN Alexis | 64 |
24 | RUBIO Diego | 81 |