Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Kopecky
1
66 kgLabous
3
54 kgDoebel-Hickok
4
51 kgVollering
5
57 kgGarcía
6
56 kgVitillo
7
51 kgDronova-Balabolina
8
63 kgNorsgaard
10
65 kgPersico
11
53 kgLippert
15
56 kgPaladin
18
59 kgChabbey
20
52 kgMackaij
22
57 kgDideriksen
25
62 kgFaulkner
28
62 kgWilliams
33
66 kg
1
66 kgLabous
3
54 kgDoebel-Hickok
4
51 kgVollering
5
57 kgGarcía
6
56 kgVitillo
7
51 kgDronova-Balabolina
8
63 kgNorsgaard
10
65 kgPersico
11
53 kgLippert
15
56 kgPaladin
18
59 kgChabbey
20
52 kgMackaij
22
57 kgDideriksen
25
62 kgFaulkner
28
62 kgWilliams
33
66 kg
Weight (KG) →
Result →
66
51
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | KOPECKY Lotte | 66 |
3 | LABOUS Juliette | 54 |
4 | DOEBEL-HICKOK Krista | 51 |
5 | VOLLERING Demi | 57 |
6 | GARCÍA Mavi | 56 |
7 | VITILLO Matilde | 51 |
8 | DRONOVA-BALABOLINA Tamara | 63 |
10 | NORSGAARD Emma | 65 |
11 | PERSICO Silvia | 53 |
15 | LIPPERT Liane | 56 |
18 | PALADIN Soraya | 59 |
20 | CHABBEY Elise | 52 |
22 | MACKAIJ Floortje | 57 |
25 | DIDERIKSEN Amalie | 62 |
28 | FAULKNER Kristen | 62 |
33 | WILLIAMS Lily | 66 |