Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Vollering
1
57 kgWiebes
2
60 kgChabbey
4
52 kgHenttala
6
58 kgPaladin
9
59 kgBrand
11
57 kgCopponi
12
55 kgConfalonieri
13
56 kgManly
18
53 kgZanardi
19
56 kgPersico
20
53 kgLippert
24
56 kgCurinier
28
53 kgVerhulst-Wild
30
58 kgNorsgaard
32
65 kgSmulders
34
51 kgGerritse
36
59 kgVigié
37
58 kg
1
57 kgWiebes
2
60 kgChabbey
4
52 kgHenttala
6
58 kgPaladin
9
59 kgBrand
11
57 kgCopponi
12
55 kgConfalonieri
13
56 kgManly
18
53 kgZanardi
19
56 kgPersico
20
53 kgLippert
24
56 kgCurinier
28
53 kgVerhulst-Wild
30
58 kgNorsgaard
32
65 kgSmulders
34
51 kgGerritse
36
59 kgVigié
37
58 kg
Weight (KG) →
Result →
65
51
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | VOLLERING Demi | 57 |
2 | WIEBES Lorena | 60 |
4 | CHABBEY Elise | 52 |
6 | HENTTALA Lotta | 58 |
9 | PALADIN Soraya | 59 |
11 | BRAND Lucinda | 57 |
12 | COPPONI Clara | 55 |
13 | CONFALONIERI Maria Giulia | 56 |
18 | MANLY Alexandra | 53 |
19 | ZANARDI Silvia | 56 |
20 | PERSICO Silvia | 53 |
24 | LIPPERT Liane | 56 |
28 | CURINIER Léa | 53 |
30 | VERHULST-WILD Gladys | 58 |
32 | NORSGAARD Emma | 65 |
34 | SMULDERS Silke | 51 |
36 | GERRITSE Femke | 59 |
37 | VIGIÉ Margaux | 58 |