Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.2 * weight - 196
This means that on average for every extra kilogram weight a rider loses 3.2 positions in the result.
Olano
1
70 kgJalabert
2
66 kgCasero
3
72 kgPeschel
4
72 kgDomínguez
5
64 kgAlonso
6
70 kgZülle
8
72 kgGarmendia
10
68 kgPérez Rodríguez
11
67 kgVirenque
12
65 kgTeteriouk
13
72 kgBrochard
16
68 kgTauler
17
74 kgGonzález de Galdeano
18
73 kgTchmil
19
75 kgPeña
20
65 kgJonker
39
69 kgde Jongh
61
76 kgBoven
62
65 kgLotz
84
76 kgKoerts
98
78 kgBlijlevens
107
70 kg
1
70 kgJalabert
2
66 kgCasero
3
72 kgPeschel
4
72 kgDomínguez
5
64 kgAlonso
6
70 kgZülle
8
72 kgGarmendia
10
68 kgPérez Rodríguez
11
67 kgVirenque
12
65 kgTeteriouk
13
72 kgBrochard
16
68 kgTauler
17
74 kgGonzález de Galdeano
18
73 kgTchmil
19
75 kgPeña
20
65 kgJonker
39
69 kgde Jongh
61
76 kgBoven
62
65 kgLotz
84
76 kgKoerts
98
78 kgBlijlevens
107
70 kg
Weight (KG) →
Result →
78
64
1
107
# | Rider | Weight (KG) |
---|---|---|
1 | OLANO Abraham | 70 |
2 | JALABERT Laurent | 66 |
3 | CASERO Ángel Luis | 72 |
4 | PESCHEL Uwe | 72 |
5 | DOMÍNGUEZ Juan Carlos | 64 |
6 | ALONSO Marino | 70 |
8 | ZÜLLE Alex | 72 |
10 | GARMENDIA Aitor | 68 |
11 | PÉREZ RODRÍGUEZ Luis | 67 |
12 | VIRENQUE Richard | 65 |
13 | TETERIOUK Andrei | 72 |
16 | BROCHARD Laurent | 68 |
17 | TAULER Toni | 74 |
18 | GONZÁLEZ DE GALDEANO Igor | 73 |
19 | TCHMIL Andrei | 75 |
20 | PEÑA Victor Hugo | 65 |
39 | JONKER Patrick | 69 |
61 | DE JONGH Steven | 76 |
62 | BOVEN Jan | 65 |
84 | LOTZ Marc | 76 |
98 | KOERTS Jans | 78 |
107 | BLIJLEVENS Jeroen | 70 |