Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Freire
1
63 kgMercado
2
56 kgApollonio
3
70 kgSastre
6
61 kgSevilla
8
62 kgCretskens
9
75 kgClinger
10
77 kgRadochla
11
70 kgTafi
12
73 kgRubiera
13
69 kgGarrido
14
70 kgGutiérrez
16
78 kgEscartín
18
61 kgLeipheimer
20
62 kgCárdenas
22
59 kgLandaluze
23
65 kgKonečný
24
67 kgLuttenberger
25
60 kg
1
63 kgMercado
2
56 kgApollonio
3
70 kgSastre
6
61 kgSevilla
8
62 kgCretskens
9
75 kgClinger
10
77 kgRadochla
11
70 kgTafi
12
73 kgRubiera
13
69 kgGarrido
14
70 kgGutiérrez
16
78 kgEscartín
18
61 kgLeipheimer
20
62 kgCárdenas
22
59 kgLandaluze
23
65 kgKonečný
24
67 kgLuttenberger
25
60 kg
Weight (KG) →
Result →
78
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | FREIRE Óscar | 63 |
2 | MERCADO Juan Miguel | 56 |
3 | APOLLONIO Massimo | 70 |
6 | SASTRE Carlos | 61 |
8 | SEVILLA Óscar | 62 |
9 | CRETSKENS Wilfried | 75 |
10 | CLINGER David | 77 |
11 | RADOCHLA Steffen | 70 |
12 | TAFI Andrea | 73 |
13 | RUBIERA José Luis | 69 |
14 | GARRIDO Martin Gerardo | 70 |
16 | GUTIÉRREZ José Enrique | 78 |
18 | ESCARTÍN Fernando | 61 |
20 | LEIPHEIMER Levi | 62 |
22 | CÁRDENAS Félix Rafael | 59 |
23 | LANDALUZE Iñigo | 65 |
24 | KONEČNÝ Tomáš | 67 |
25 | LUTTENBERGER Peter | 60 |