Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
van Poppel
1
82 kgDrucker
2
75 kgMeersman
3
63 kgVanspeybrouck
4
76 kgRojas
5
70 kgMezgec
6
72 kgWippert
7
75 kgWaeytens
8
67 kgSbaragli
9
74 kgVon Hoff
10
70 kgLampaert
11
75 kgHaas
12
71 kgMadrazo
13
61 kgJauregui
14
60 kgGrosu
15
68 kgDomagalski
16
77 kgColli
17
73 kgMas
18
69 kgVan Lerberghe
19
83 kgBevin
20
75 kgTsatevich
21
64 kgPichon
22
69 kgWyss
23
65 kg
1
82 kgDrucker
2
75 kgMeersman
3
63 kgVanspeybrouck
4
76 kgRojas
5
70 kgMezgec
6
72 kgWippert
7
75 kgWaeytens
8
67 kgSbaragli
9
74 kgVon Hoff
10
70 kgLampaert
11
75 kgHaas
12
71 kgMadrazo
13
61 kgJauregui
14
60 kgGrosu
15
68 kgDomagalski
16
77 kgColli
17
73 kgMas
18
69 kgVan Lerberghe
19
83 kgBevin
20
75 kgTsatevich
21
64 kgPichon
22
69 kgWyss
23
65 kg
Weight (KG) →
Result →
83
60
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | VAN POPPEL Danny | 82 |
2 | DRUCKER Jempy | 75 |
3 | MEERSMAN Gianni | 63 |
4 | VANSPEYBROUCK Pieter | 76 |
5 | ROJAS José Joaquín | 70 |
6 | MEZGEC Luka | 72 |
7 | WIPPERT Wouter | 75 |
8 | WAEYTENS Zico | 67 |
9 | SBARAGLI Kristian | 74 |
10 | VON HOFF Steele | 70 |
11 | LAMPAERT Yves | 75 |
12 | HAAS Nathan | 71 |
13 | MADRAZO Ángel | 61 |
14 | JAUREGUI Quentin | 60 |
15 | GROSU Eduard-Michael | 68 |
16 | DOMAGALSKI Karol | 77 |
17 | COLLI Daniele | 73 |
18 | MAS Lluís | 69 |
19 | VAN LERBERGHE Bert | 83 |
20 | BEVIN Patrick | 75 |
21 | TSATEVICH Alexey | 64 |
22 | PICHON Laurent | 69 |
23 | WYSS Danilo | 65 |