Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Vlasov
1
68 kgRoglič
2
65 kgMolano
3
72 kgGarcía Cortina
4
77 kgYates
5
58 kgAffini
6
80 kgHowson
7
68 kgKoretzky
8
69 kgQuinn
9
67 kgRomo
10
70 kgBennett
11
58 kgVendrame
12
60 kgRubio
13
56 kgBrambilla
14
57 kgProdhomme
15
63 kgPeñalver
16
67 kgCastrillo
17
74 kgTratnik
18
67 kgMas
20
69 kgBais
21
66 kgZambanini
22
62 kgPrades
23
63 kgDonovan
24
70 kgCanal
26
70 kg
1
68 kgRoglič
2
65 kgMolano
3
72 kgGarcía Cortina
4
77 kgYates
5
58 kgAffini
6
80 kgHowson
7
68 kgKoretzky
8
69 kgQuinn
9
67 kgRomo
10
70 kgBennett
11
58 kgVendrame
12
60 kgRubio
13
56 kgBrambilla
14
57 kgProdhomme
15
63 kgPeñalver
16
67 kgCastrillo
17
74 kgTratnik
18
67 kgMas
20
69 kgBais
21
66 kgZambanini
22
62 kgPrades
23
63 kgDonovan
24
70 kgCanal
26
70 kg
Weight (KG) →
Result →
80
56
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | VLASOV Aleksandr | 68 |
2 | ROGLIČ Primož | 65 |
3 | MOLANO Juan Sebastián | 72 |
4 | GARCÍA CORTINA Iván | 77 |
5 | YATES Adam | 58 |
6 | AFFINI Edoardo | 80 |
7 | HOWSON Damien | 68 |
8 | KORETZKY Victor | 69 |
9 | QUINN Sean | 67 |
10 | ROMO Javier | 70 |
11 | BENNETT George | 58 |
12 | VENDRAME Andrea | 60 |
13 | RUBIO Einer | 56 |
14 | BRAMBILLA Gianluca | 57 |
15 | PRODHOMME Nicolas | 63 |
16 | PEÑALVER Manuel | 67 |
17 | CASTRILLO Pablo | 74 |
18 | TRATNIK Jan | 67 |
20 | MAS Lluís | 69 |
21 | BAIS Mattia | 66 |
22 | ZAMBANINI Edoardo | 62 |
23 | PRADES Eduard | 63 |
24 | DONOVAN Mark | 70 |
26 | CANAL Carlos | 70 |