Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Valverde
1
61 kgGutiérrez
2
71 kgGalparsoro
3
67 kgDavis
4
73 kgMartín Perdiguero
6
63 kgPaulinho
7
64 kgNavas
8
78 kgGonzález de Galdeano
9
73 kgZaballa
10
66 kgArroyo
11
63 kgVentoso
12
75 kgPérez
13
70 kgEdo
15
64 kgBeloki
16
66 kgVicioso
17
60 kgFlorencio
20
59 kgDomínguez
22
64 kgBaranowski
23
68 kgUrtasun
24
69 kgTorrent
25
71 kg
1
61 kgGutiérrez
2
71 kgGalparsoro
3
67 kgDavis
4
73 kgMartín Perdiguero
6
63 kgPaulinho
7
64 kgNavas
8
78 kgGonzález de Galdeano
9
73 kgZaballa
10
66 kgArroyo
11
63 kgVentoso
12
75 kgPérez
13
70 kgEdo
15
64 kgBeloki
16
66 kgVicioso
17
60 kgFlorencio
20
59 kgDomínguez
22
64 kgBaranowski
23
68 kgUrtasun
24
69 kgTorrent
25
71 kg
Weight (KG) →
Result →
78
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | VALVERDE Alejandro | 61 |
2 | GUTIÉRREZ José Iván | 71 |
3 | GALPARSORO Dionisio | 67 |
4 | DAVIS Allan | 73 |
6 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
7 | PAULINHO Sérgio Miguel | 64 |
8 | NAVAS David | 78 |
9 | GONZÁLEZ DE GALDEANO Igor | 73 |
10 | ZABALLA Constantino | 66 |
11 | ARROYO David | 63 |
12 | VENTOSO Francisco José | 75 |
13 | PÉREZ Aitor | 70 |
15 | EDO Ángel | 64 |
16 | BELOKI Gorka | 66 |
17 | VICIOSO Ángel | 60 |
20 | FLORENCIO Xavier | 59 |
22 | DOMÍNGUEZ Juan Carlos | 64 |
23 | BARANOWSKI Dariusz | 68 |
24 | URTASUN Pablo | 69 |
25 | TORRENT Carlos | 71 |