Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Lasca
1
65 kgRojas
2
70 kgBarbero
3
66 kgUrtasun
4
69 kgLobato
5
64 kgSanz
6
67 kgPlaza
7
77 kgMancebo
8
64 kgHanson
9
74 kgEl Fares
10
62 kgShalunov
11
70 kgFirsanov
12
58 kgGalland
13
62 kgPeron
14
70 kgTxurruka
15
58 kgMoreno
18
63 kgVerschoor
19
74.5 kgJeandesboz
20
69 kgChalapud
21
63 kgCardoso
22
56 kgShpilevsky
23
78 kgBoev
25
74 kg
1
65 kgRojas
2
70 kgBarbero
3
66 kgUrtasun
4
69 kgLobato
5
64 kgSanz
6
67 kgPlaza
7
77 kgMancebo
8
64 kgHanson
9
74 kgEl Fares
10
62 kgShalunov
11
70 kgFirsanov
12
58 kgGalland
13
62 kgPeron
14
70 kgTxurruka
15
58 kgMoreno
18
63 kgVerschoor
19
74.5 kgJeandesboz
20
69 kgChalapud
21
63 kgCardoso
22
56 kgShpilevsky
23
78 kgBoev
25
74 kg
Weight (KG) →
Result →
78
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | LASCA Francesco | 65 |
2 | ROJAS José Joaquín | 70 |
3 | BARBERO Carlos | 66 |
4 | URTASUN Pablo | 69 |
5 | LOBATO Juan José | 64 |
6 | SANZ Enrique | 67 |
7 | PLAZA Rubén | 77 |
8 | MANCEBO Francisco | 64 |
9 | HANSON Ken | 74 |
10 | EL FARES Julien | 62 |
11 | SHALUNOV Evgeny | 70 |
12 | FIRSANOV Sergey | 58 |
13 | GALLAND Jérémie | 62 |
14 | PERON Andrea | 70 |
15 | TXURRUKA Amets | 58 |
18 | MORENO Javier | 63 |
19 | VERSCHOOR Martijn | 74.5 |
20 | JEANDESBOZ Fabrice | 69 |
21 | CHALAPUD Robinson | 63 |
22 | CARDOSO André | 56 |
23 | SHPILEVSKY Boris | 78 |
25 | BOEV Igor | 74 |