Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Lasca
1
65 kgLobato
2
64 kgSanz
3
67 kgRojas
4
70 kgUrtasun
5
69 kgBarbero
6
66 kgHanson
7
74 kgGalland
8
62 kgPeron
9
70 kgMoreno
12
63 kgVerschoor
13
74.5 kgCardoso
14
56 kgShpilevsky
15
78 kgBoev
16
74 kgSentjens
17
75 kgMancebo
18
64 kgPfingsten
19
69 kgMas
20
69 kgShalunov
21
70 kgJeandesboz
22
69 kgTrusov
23
77 kg
1
65 kgLobato
2
64 kgSanz
3
67 kgRojas
4
70 kgUrtasun
5
69 kgBarbero
6
66 kgHanson
7
74 kgGalland
8
62 kgPeron
9
70 kgMoreno
12
63 kgVerschoor
13
74.5 kgCardoso
14
56 kgShpilevsky
15
78 kgBoev
16
74 kgSentjens
17
75 kgMancebo
18
64 kgPfingsten
19
69 kgMas
20
69 kgShalunov
21
70 kgJeandesboz
22
69 kgTrusov
23
77 kg
Weight (KG) →
Result →
78
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | LASCA Francesco | 65 |
2 | LOBATO Juan José | 64 |
3 | SANZ Enrique | 67 |
4 | ROJAS José Joaquín | 70 |
5 | URTASUN Pablo | 69 |
6 | BARBERO Carlos | 66 |
7 | HANSON Ken | 74 |
8 | GALLAND Jérémie | 62 |
9 | PERON Andrea | 70 |
12 | MORENO Javier | 63 |
13 | VERSCHOOR Martijn | 74.5 |
14 | CARDOSO André | 56 |
15 | SHPILEVSKY Boris | 78 |
16 | BOEV Igor | 74 |
17 | SENTJENS Roy | 75 |
18 | MANCEBO Francisco | 64 |
19 | PFINGSTEN Christoph | 69 |
20 | MAS Lluís | 69 |
21 | SHALUNOV Evgeny | 70 |
22 | JEANDESBOZ Fabrice | 69 |
23 | TRUSOV Nikolay | 77 |