Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Bilbao
1
60 kgBarbero
2
66 kgRolland
3
70 kgShilov
4
67 kgIntxausti
5
61 kgBol
6
71 kgFernández
7
69 kgPinto
8
58 kgAntón
9
64 kgMoreno
10
63 kgRubiano
11
58 kgTorres
12
56 kgMéderel
13
59 kgPalini
14
67 kgShalunov
15
70 kgCastroviejo
17
62 kgSicard
18
63 kgCaldeira
19
76 kgÁvila
20
61 kgBelda
21
53 kgMilán
22
67 kgGonzález
23
63 kgJeandesboz
24
69 kgSilva
25
65 kg
1
60 kgBarbero
2
66 kgRolland
3
70 kgShilov
4
67 kgIntxausti
5
61 kgBol
6
71 kgFernández
7
69 kgPinto
8
58 kgAntón
9
64 kgMoreno
10
63 kgRubiano
11
58 kgTorres
12
56 kgMéderel
13
59 kgPalini
14
67 kgShalunov
15
70 kgCastroviejo
17
62 kgSicard
18
63 kgCaldeira
19
76 kgÁvila
20
61 kgBelda
21
53 kgMilán
22
67 kgGonzález
23
63 kgJeandesboz
24
69 kgSilva
25
65 kg
Weight (KG) →
Result →
76
53
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | BILBAO Pello | 60 |
2 | BARBERO Carlos | 66 |
3 | ROLLAND Pierre | 70 |
4 | SHILOV Sergey | 67 |
5 | INTXAUSTI Beñat | 61 |
6 | BOL Jetse | 71 |
7 | FERNÁNDEZ Delio | 69 |
8 | PINTO Edgar | 58 |
9 | ANTÓN Igor | 64 |
10 | MORENO Javier | 63 |
11 | RUBIANO Miguel Angel | 58 |
12 | TORRES Rodolfo Andrés | 56 |
13 | MÉDEREL Maxime | 59 |
14 | PALINI Andrea | 67 |
15 | SHALUNOV Evgeny | 70 |
17 | CASTROVIEJO Jonathan | 62 |
18 | SICARD Romain | 63 |
19 | CALDEIRA Samuel José | 76 |
20 | ÁVILA Edwin | 61 |
21 | BELDA David | 53 |
22 | MILÁN Diego | 67 |
23 | GONZÁLEZ Adrián | 63 |
24 | JEANDESBOZ Fabrice | 69 |
25 | SILVA Rafael | 65 |