Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 18
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Barbero
1
66 kgBilbao
2
60 kgTulik
3
64 kgShilov
4
67 kgBol
5
71 kgSanz
6
67 kgPinto
7
58 kgRubiano
8
58 kgPalini
9
67 kgMoreno
10
63 kgFernández
11
69 kgCastroviejo
13
62 kgCaldeira
14
76 kgÁvila
15
61 kgMilán
16
67 kgGonzález
17
63 kgSilva
18
65 kgIntxausti
19
61 kgRolland
20
70 kgFigueiredo
21
56 kgAntón
22
64 kg
1
66 kgBilbao
2
60 kgTulik
3
64 kgShilov
4
67 kgBol
5
71 kgSanz
6
67 kgPinto
7
58 kgRubiano
8
58 kgPalini
9
67 kgMoreno
10
63 kgFernández
11
69 kgCastroviejo
13
62 kgCaldeira
14
76 kgÁvila
15
61 kgMilán
16
67 kgGonzález
17
63 kgSilva
18
65 kgIntxausti
19
61 kgRolland
20
70 kgFigueiredo
21
56 kgAntón
22
64 kg
Weight (KG) →
Result →
76
56
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | BARBERO Carlos | 66 |
2 | BILBAO Pello | 60 |
3 | TULIK Angélo | 64 |
4 | SHILOV Sergey | 67 |
5 | BOL Jetse | 71 |
6 | SANZ Enrique | 67 |
7 | PINTO Edgar | 58 |
8 | RUBIANO Miguel Angel | 58 |
9 | PALINI Andrea | 67 |
10 | MORENO Javier | 63 |
11 | FERNÁNDEZ Delio | 69 |
13 | CASTROVIEJO Jonathan | 62 |
14 | CALDEIRA Samuel José | 76 |
15 | ÁVILA Edwin | 61 |
16 | MILÁN Diego | 67 |
17 | GONZÁLEZ Adrián | 63 |
18 | SILVA Rafael | 65 |
19 | INTXAUSTI Beñat | 61 |
20 | ROLLAND Pierre | 70 |
21 | FIGUEIREDO Frederico | 56 |
22 | ANTÓN Igor | 64 |