Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Jensen
1
67 kgEngelhardt
2
68 kgFedeli
3
65 kgMolenaar
4
63 kgGarcía
5
67 kgGarcía Cortina
6
77 kgVelasco
7
59 kgSepúlveda
8
59 kgBalderstone
9
61 kgBerhe
10
58 kgCovi
11
66 kgRodríguez
12
59 kgFuglsang
13
67 kgElosegui
15
75 kgSteinhauser
16
65 kgCepeda
17
56 kgPeña
18
56 kgGarcía Pierna
19
67 kg
1
67 kgEngelhardt
2
68 kgFedeli
3
65 kgMolenaar
4
63 kgGarcía
5
67 kgGarcía Cortina
6
77 kgVelasco
7
59 kgSepúlveda
8
59 kgBalderstone
9
61 kgBerhe
10
58 kgCovi
11
66 kgRodríguez
12
59 kgFuglsang
13
67 kgElosegui
15
75 kgSteinhauser
16
65 kgCepeda
17
56 kgPeña
18
56 kgGarcía Pierna
19
67 kg
Weight (KG) →
Result →
77
56
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | JENSEN August | 67 |
2 | ENGELHARDT Felix | 68 |
3 | FEDELI Alessandro | 65 |
4 | MOLENAAR Alex | 63 |
5 | GARCÍA José María | 67 |
6 | GARCÍA CORTINA Iván | 77 |
7 | VELASCO Simone | 59 |
8 | SEPÚLVEDA Eduardo | 59 |
9 | BALDERSTONE Abel | 61 |
10 | BERHE Welay Hagos | 58 |
11 | COVI Alessandro | 66 |
12 | RODRÍGUEZ Cristián | 59 |
13 | FUGLSANG Jakob | 67 |
15 | ELOSEGUI Iñigo | 75 |
16 | STEINHAUSER Georg | 65 |
17 | CEPEDA Jefferson Alexander | 56 |
18 | PEÑA Jesús David | 56 |
19 | GARCÍA PIERNA Raúl | 67 |