Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Deloor
1
79 kgMolinar
2
70 kgDignef
3
70 kgCañardo
4
77 kgTrueba
5
58 kgDeloor
8
72 kgBulla
9
75 kgBlattmann
10
68 kgEzquerra
11
63 kgBachero
13
64 kgFayolle
14
63 kgCepeda
15
64 kgGimeno
16
73 kgCardona
17
68 kgMontero
20
74 kgvan der Ruit
22
80 kgMolina
24
62 kgÁlvarez
25
61 kgAmberg
27
72 kgFigueras
31
70 kgLouyet
38
64 kg
1
79 kgMolinar
2
70 kgDignef
3
70 kgCañardo
4
77 kgTrueba
5
58 kgDeloor
8
72 kgBulla
9
75 kgBlattmann
10
68 kgEzquerra
11
63 kgBachero
13
64 kgFayolle
14
63 kgCepeda
15
64 kgGimeno
16
73 kgCardona
17
68 kgMontero
20
74 kgvan der Ruit
22
80 kgMolina
24
62 kgÁlvarez
25
61 kgAmberg
27
72 kgFigueras
31
70 kgLouyet
38
64 kg
Weight (KG) →
Result →
80
58
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | DELOOR Gustaaf | 79 |
2 | MOLINAR Edoardo | 70 |
3 | DIGNEF Antoon | 70 |
4 | CAÑARDO Mariano | 77 |
5 | TRUEBA Vicente | 58 |
8 | DELOOR Alfons | 72 |
9 | BULLA Max | 75 |
10 | BLATTMANN Walter | 68 |
11 | EZQUERRA Federico | 63 |
13 | BACHERO Vicente | 64 |
14 | FAYOLLE Fernand | 63 |
15 | CEPEDA Francisco | 64 |
16 | GIMENO Juan | 73 |
17 | CARDONA Salvador | 68 |
20 | MONTERO Luciano | 74 |
22 | VAN DER RUIT Gerrit | 80 |
24 | MOLINA Salvador | 62 |
25 | ÁLVAREZ Emiliano | 61 |
27 | AMBERG Leo | 72 |
31 | FIGUERAS Isidro | 70 |
38 | LOUYET Léon | 64 |