Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 62
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Dignef
1
70 kgMolinar
2
70 kgCañardo
4
77 kgDeloor
5
79 kgBulla
8
75 kgLouyet
9
64 kgvan der Ruit
10
80 kgBlattmann
11
68 kgAmberg
12
72 kgMontero
14
74 kgDeloor
15
72 kgFayolle
16
63 kgBachero
17
64 kgGimeno
18
73 kgTrueba
20
58 kgCardona
23
68 kgMolina
24
62 kgCepeda
27
64 kgThallinger
28
70 kgFigueras
33
70 kg
1
70 kgMolinar
2
70 kgCañardo
4
77 kgDeloor
5
79 kgBulla
8
75 kgLouyet
9
64 kgvan der Ruit
10
80 kgBlattmann
11
68 kgAmberg
12
72 kgMontero
14
74 kgDeloor
15
72 kgFayolle
16
63 kgBachero
17
64 kgGimeno
18
73 kgTrueba
20
58 kgCardona
23
68 kgMolina
24
62 kgCepeda
27
64 kgThallinger
28
70 kgFigueras
33
70 kg
Weight (KG) →
Result →
80
58
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | DIGNEF Antoon | 70 |
2 | MOLINAR Edoardo | 70 |
4 | CAÑARDO Mariano | 77 |
5 | DELOOR Gustaaf | 79 |
8 | BULLA Max | 75 |
9 | LOUYET Léon | 64 |
10 | VAN DER RUIT Gerrit | 80 |
11 | BLATTMANN Walter | 68 |
12 | AMBERG Leo | 72 |
14 | MONTERO Luciano | 74 |
15 | DELOOR Alfons | 72 |
16 | FAYOLLE Fernand | 63 |
17 | BACHERO Vicente | 64 |
18 | GIMENO Juan | 73 |
20 | TRUEBA Vicente | 58 |
23 | CARDONA Salvador | 68 |
24 | MOLINA Salvador | 62 |
27 | CEPEDA Francisco | 64 |
28 | THALLINGER Karl | 70 |
33 | FIGUERAS Isidro | 70 |