Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Cañardo
1
77 kgDeloor
2
79 kgDignef
4
70 kgCardona
5
68 kgLouyet
6
64 kgFigueras
7
70 kgAmberg
8
72 kgFayolle
11
63 kgBlattmann
12
68 kgDeloor
13
72 kgMolinar
14
70 kgBulla
16
75 kgvan der Ruit
17
80 kgCepeda
18
64 kgThallinger
21
70 kgBachero
22
64 kgGimeno
26
73 kgMolina
33
62 kg
1
77 kgDeloor
2
79 kgDignef
4
70 kgCardona
5
68 kgLouyet
6
64 kgFigueras
7
70 kgAmberg
8
72 kgFayolle
11
63 kgBlattmann
12
68 kgDeloor
13
72 kgMolinar
14
70 kgBulla
16
75 kgvan der Ruit
17
80 kgCepeda
18
64 kgThallinger
21
70 kgBachero
22
64 kgGimeno
26
73 kgMolina
33
62 kg
Weight (KG) →
Result →
80
62
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | CAÑARDO Mariano | 77 |
2 | DELOOR Gustaaf | 79 |
4 | DIGNEF Antoon | 70 |
5 | CARDONA Salvador | 68 |
6 | LOUYET Léon | 64 |
7 | FIGUERAS Isidro | 70 |
8 | AMBERG Leo | 72 |
11 | FAYOLLE Fernand | 63 |
12 | BLATTMANN Walter | 68 |
13 | DELOOR Alfons | 72 |
14 | MOLINAR Edoardo | 70 |
16 | BULLA Max | 75 |
17 | VAN DER RUIT Gerrit | 80 |
18 | CEPEDA Francisco | 64 |
21 | THALLINGER Karl | 70 |
22 | BACHERO Vicente | 64 |
26 | GIMENO Juan | 73 |
33 | MOLINA Salvador | 62 |