Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 82
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Deloor
3
79 kgDignef
4
70 kgBulla
5
75 kgCañardo
6
77 kgMolinar
7
70 kgCepeda
9
64 kgGimeno
10
73 kgThallinger
11
70 kgvan der Ruit
12
80 kgFayolle
13
63 kgCardona
14
68 kgAmberg
17
72 kgDeloor
20
72 kgBlattmann
21
68 kgFigueras
24
70 kgMolina
26
62 kgBachero
27
64 kgLouyet
33
64 kg
3
79 kgDignef
4
70 kgBulla
5
75 kgCañardo
6
77 kgMolinar
7
70 kgCepeda
9
64 kgGimeno
10
73 kgThallinger
11
70 kgvan der Ruit
12
80 kgFayolle
13
63 kgCardona
14
68 kgAmberg
17
72 kgDeloor
20
72 kgBlattmann
21
68 kgFigueras
24
70 kgMolina
26
62 kgBachero
27
64 kgLouyet
33
64 kg
Weight (KG) →
Result →
80
62
3
33
# | Rider | Weight (KG) |
---|---|---|
3 | DELOOR Gustaaf | 79 |
4 | DIGNEF Antoon | 70 |
5 | BULLA Max | 75 |
6 | CAÑARDO Mariano | 77 |
7 | MOLINAR Edoardo | 70 |
9 | CEPEDA Francisco | 64 |
10 | GIMENO Juan | 73 |
11 | THALLINGER Karl | 70 |
12 | VAN DER RUIT Gerrit | 80 |
13 | FAYOLLE Fernand | 63 |
14 | CARDONA Salvador | 68 |
17 | AMBERG Leo | 72 |
20 | DELOOR Alfons | 72 |
21 | BLATTMANN Walter | 68 |
24 | FIGUERAS Isidro | 70 |
26 | MOLINA Salvador | 62 |
27 | BACHERO Vicente | 64 |
33 | LOUYET Léon | 64 |