Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Cardona
1
68 kgCañardo
2
77 kgCepeda
4
64 kgFigueras
5
70 kgBachero
10
64 kgGimeno
13
73 kgMolina
15
62 kgThallinger
17
70 kgBulla
18
75 kgMolinar
21
70 kgDignef
23
70 kgDeloor
24
72 kgDeloor
25
79 kgBlattmann
26
68 kgFayolle
27
63 kgAmberg
28
72 kgvan der Ruit
29
80 kg
1
68 kgCañardo
2
77 kgCepeda
4
64 kgFigueras
5
70 kgBachero
10
64 kgGimeno
13
73 kgMolina
15
62 kgThallinger
17
70 kgBulla
18
75 kgMolinar
21
70 kgDignef
23
70 kgDeloor
24
72 kgDeloor
25
79 kgBlattmann
26
68 kgFayolle
27
63 kgAmberg
28
72 kgvan der Ruit
29
80 kg
Weight (KG) →
Result →
80
62
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | CARDONA Salvador | 68 |
2 | CAÑARDO Mariano | 77 |
4 | CEPEDA Francisco | 64 |
5 | FIGUERAS Isidro | 70 |
10 | BACHERO Vicente | 64 |
13 | GIMENO Juan | 73 |
15 | MOLINA Salvador | 62 |
17 | THALLINGER Karl | 70 |
18 | BULLA Max | 75 |
21 | MOLINAR Edoardo | 70 |
23 | DIGNEF Antoon | 70 |
24 | DELOOR Alfons | 72 |
25 | DELOOR Gustaaf | 79 |
26 | BLATTMANN Walter | 68 |
27 | FAYOLLE Fernand | 63 |
28 | AMBERG Leo | 72 |
29 | VAN DER RUIT Gerrit | 80 |