Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 118
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Godefroot
4
73 kgSaéz
5
74 kgLasa
6
68 kgRosiers
7
78 kgKarstens
8
74 kgSteevens
11
73 kgKrekels
12
73 kgSchleck
19
72 kgDolman
24
71 kgSchutz
46
72 kgDíaz
47
72 kgZoetemelk
49
68 kgPijnen
51
72 kgPoulidor
53
71 kgTamames
55
66 kgParenteau
61
68 kgAja
73
66 kgBilsland
76
73 kgBracke
101
79 kg
4
73 kgSaéz
5
74 kgLasa
6
68 kgRosiers
7
78 kgKarstens
8
74 kgSteevens
11
73 kgKrekels
12
73 kgSchleck
19
72 kgDolman
24
71 kgSchutz
46
72 kgDíaz
47
72 kgZoetemelk
49
68 kgPijnen
51
72 kgPoulidor
53
71 kgTamames
55
66 kgParenteau
61
68 kgAja
73
66 kgBilsland
76
73 kgBracke
101
79 kg
Weight (KG) →
Result →
79
66
4
101
# | Rider | Weight (KG) |
---|---|---|
4 | GODEFROOT Walter | 73 |
5 | SAÉZ Ramón | 74 |
6 | LASA Miguel María | 68 |
7 | ROSIERS Roger | 78 |
8 | KARSTENS Gerben | 74 |
11 | STEEVENS Harry | 73 |
12 | KREKELS Jan | 73 |
19 | SCHLECK Johny | 72 |
24 | DOLMAN Evert | 71 |
46 | SCHUTZ Edy | 72 |
47 | DÍAZ Ventura | 72 |
49 | ZOETEMELK Joop | 68 |
51 | PIJNEN René | 72 |
53 | POULIDOR Raymond | 71 |
55 | TAMAMES Agustín | 66 |
61 | PARENTEAU Jean-Pierre | 68 |
73 | AJA Gonzalo | 66 |
76 | BILSLAND William | 73 |
101 | BRACKE Ferdinand | 79 |