Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -30.3 * weight + 2566
This means that on average for every extra kilogram weight a rider loses -30.3 positions in the result.
Karstens
3
74 kgGodefroot
5
73 kgSaéz
6
74 kgLasa
12
68 kgKrekels
13
73 kgDolman
14
71 kgPijnen
17
72 kgBracke
22
79 kgTamames
27
66 kgDíaz
28
72 kgSteevens
32
73 kgRosiers
990
78 kgSchleck
990
72 kgSchutz
990
72 kgZoetemelk
990
68 kgAja
990
66 kgPoulidor
990
71 kgParenteau
990
68 kg
3
74 kgGodefroot
5
73 kgSaéz
6
74 kgLasa
12
68 kgKrekels
13
73 kgDolman
14
71 kgPijnen
17
72 kgBracke
22
79 kgTamames
27
66 kgDíaz
28
72 kgSteevens
32
73 kgRosiers
990
78 kgSchleck
990
72 kgSchutz
990
72 kgZoetemelk
990
68 kgAja
990
66 kgPoulidor
990
71 kgParenteau
990
68 kg
Weight (KG) →
Result →
79
66
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | KARSTENS Gerben | 74 |
5 | GODEFROOT Walter | 73 |
6 | SAÉZ Ramón | 74 |
12 | LASA Miguel María | 68 |
13 | KREKELS Jan | 73 |
14 | DOLMAN Evert | 71 |
17 | PIJNEN René | 72 |
22 | BRACKE Ferdinand | 79 |
27 | TAMAMES Agustín | 66 |
28 | DÍAZ Ventura | 72 |
32 | STEEVENS Harry | 73 |
990 | ROSIERS Roger | 78 |
990 | SCHLECK Johny | 72 |
990 | SCHUTZ Edy | 72 |
990 | ZOETEMELK Joop | 68 |
990 | AJA Gonzalo | 66 |
990 | POULIDOR Raymond | 71 |
990 | PARENTEAU Jean-Pierre | 68 |