Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.6 * weight + 223
This means that on average for every extra kilogram weight a rider loses -2.6 positions in the result.
Lasa
2
68 kgGodefroot
3
73 kgRosiers
7
78 kgSteevens
8
73 kgDolman
13
71 kgPijnen
16
72 kgSaéz
19
74 kgSchleck
21
72 kgKrekels
23
73 kgDíaz
31
72 kgBracke
36
79 kgZoetemelk
38
68 kgKarstens
39
74 kgPoulidor
53
71 kgAja
56
66 kgSchutz
57
72 kgTamames
58
66 kgParenteau
94
68 kgBilsland
97
73 kg
2
68 kgGodefroot
3
73 kgRosiers
7
78 kgSteevens
8
73 kgDolman
13
71 kgPijnen
16
72 kgSaéz
19
74 kgSchleck
21
72 kgKrekels
23
73 kgDíaz
31
72 kgBracke
36
79 kgZoetemelk
38
68 kgKarstens
39
74 kgPoulidor
53
71 kgAja
56
66 kgSchutz
57
72 kgTamames
58
66 kgParenteau
94
68 kgBilsland
97
73 kg
Weight (KG) →
Result →
79
66
2
97
# | Rider | Weight (KG) |
---|---|---|
2 | LASA Miguel María | 68 |
3 | GODEFROOT Walter | 73 |
7 | ROSIERS Roger | 78 |
8 | STEEVENS Harry | 73 |
13 | DOLMAN Evert | 71 |
16 | PIJNEN René | 72 |
19 | SAÉZ Ramón | 74 |
21 | SCHLECK Johny | 72 |
23 | KREKELS Jan | 73 |
31 | DÍAZ Ventura | 72 |
36 | BRACKE Ferdinand | 79 |
38 | ZOETEMELK Joop | 68 |
39 | KARSTENS Gerben | 74 |
53 | POULIDOR Raymond | 71 |
56 | AJA Gonzalo | 66 |
57 | SCHUTZ Edy | 72 |
58 | TAMAMES Agustín | 66 |
94 | PARENTEAU Jean-Pierre | 68 |
97 | BILSLAND William | 73 |