Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.3 * weight + 263
This means that on average for every extra kilogram weight a rider loses -3.3 positions in the result.
Dolman
2
71 kgSteevens
3
73 kgLasa
4
68 kgKrekels
6
73 kgKarstens
11
74 kgRosiers
12
78 kgBracke
14
79 kgGodefroot
15
73 kgSaéz
17
74 kgSchleck
27
72 kgZoetemelk
29
68 kgDíaz
31
72 kgPijnen
33
72 kgBilsland
42
73 kgTamames
53
66 kgPoulidor
55
71 kgSchutz
58
72 kgAja
63
66 kgParenteau
65
68 kg
2
71 kgSteevens
3
73 kgLasa
4
68 kgKrekels
6
73 kgKarstens
11
74 kgRosiers
12
78 kgBracke
14
79 kgGodefroot
15
73 kgSaéz
17
74 kgSchleck
27
72 kgZoetemelk
29
68 kgDíaz
31
72 kgPijnen
33
72 kgBilsland
42
73 kgTamames
53
66 kgPoulidor
55
71 kgSchutz
58
72 kgAja
63
66 kgParenteau
65
68 kg
Weight (KG) →
Result →
79
66
2
65
# | Rider | Weight (KG) |
---|---|---|
2 | DOLMAN Evert | 71 |
3 | STEEVENS Harry | 73 |
4 | LASA Miguel María | 68 |
6 | KREKELS Jan | 73 |
11 | KARSTENS Gerben | 74 |
12 | ROSIERS Roger | 78 |
14 | BRACKE Ferdinand | 79 |
15 | GODEFROOT Walter | 73 |
17 | SAÉZ Ramón | 74 |
27 | SCHLECK Johny | 72 |
29 | ZOETEMELK Joop | 68 |
31 | DÍAZ Ventura | 72 |
33 | PIJNEN René | 72 |
42 | BILSLAND William | 73 |
53 | TAMAMES Agustín | 66 |
55 | POULIDOR Raymond | 71 |
58 | SCHUTZ Edy | 72 |
63 | AJA Gonzalo | 66 |
65 | PARENTEAU Jean-Pierre | 68 |