Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.9 * weight + 241
This means that on average for every extra kilogram weight a rider loses -2.9 positions in the result.
Pijnen
1
72 kgParenteau
2
68 kgGodefroot
4
73 kgKrekels
5
73 kgKarstens
6
74 kgSaéz
11
74 kgBracke
12
79 kgBilsland
17
73 kgDolman
33
71 kgRosiers
38
78 kgSchutz
39
72 kgTamames
42
66 kgDíaz
46
72 kgSchleck
50
72 kgPoulidor
53
71 kgLasa
64
68 kgAja
66
66 kgZoetemelk
67
68 kgSteevens
94
73 kg
1
72 kgParenteau
2
68 kgGodefroot
4
73 kgKrekels
5
73 kgKarstens
6
74 kgSaéz
11
74 kgBracke
12
79 kgBilsland
17
73 kgDolman
33
71 kgRosiers
38
78 kgSchutz
39
72 kgTamames
42
66 kgDíaz
46
72 kgSchleck
50
72 kgPoulidor
53
71 kgLasa
64
68 kgAja
66
66 kgZoetemelk
67
68 kgSteevens
94
73 kg
Weight (KG) →
Result →
79
66
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | PIJNEN René | 72 |
2 | PARENTEAU Jean-Pierre | 68 |
4 | GODEFROOT Walter | 73 |
5 | KREKELS Jan | 73 |
6 | KARSTENS Gerben | 74 |
11 | SAÉZ Ramón | 74 |
12 | BRACKE Ferdinand | 79 |
17 | BILSLAND William | 73 |
33 | DOLMAN Evert | 71 |
38 | ROSIERS Roger | 78 |
39 | SCHUTZ Edy | 72 |
42 | TAMAMES Agustín | 66 |
46 | DÍAZ Ventura | 72 |
50 | SCHLECK Johny | 72 |
53 | POULIDOR Raymond | 71 |
64 | LASA Miguel María | 68 |
66 | AJA Gonzalo | 66 |
67 | ZOETEMELK Joop | 68 |
94 | STEEVENS Harry | 73 |