Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.6 * weight - 149
This means that on average for every extra kilogram weight a rider loses 2.6 positions in the result.
Godefroot
1
73 kgLasa
5
68 kgPijnen
7
72 kgDolman
8
71 kgZoetemelk
13
68 kgBracke
15
79 kgSchutz
17
72 kgAja
18
66 kgPoulidor
19
71 kgDíaz
24
72 kgSchleck
28
72 kgTamames
41
66 kgKarstens
65
74 kgSaéz
70
74 kgParenteau
78
68 kgSteevens
82
73 kgRosiers
83
78 kgKrekels
85
73 kgBilsland
97
73 kg
1
73 kgLasa
5
68 kgPijnen
7
72 kgDolman
8
71 kgZoetemelk
13
68 kgBracke
15
79 kgSchutz
17
72 kgAja
18
66 kgPoulidor
19
71 kgDíaz
24
72 kgSchleck
28
72 kgTamames
41
66 kgKarstens
65
74 kgSaéz
70
74 kgParenteau
78
68 kgSteevens
82
73 kgRosiers
83
78 kgKrekels
85
73 kgBilsland
97
73 kg
Weight (KG) →
Result →
79
66
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | GODEFROOT Walter | 73 |
5 | LASA Miguel María | 68 |
7 | PIJNEN René | 72 |
8 | DOLMAN Evert | 71 |
13 | ZOETEMELK Joop | 68 |
15 | BRACKE Ferdinand | 79 |
17 | SCHUTZ Edy | 72 |
18 | AJA Gonzalo | 66 |
19 | POULIDOR Raymond | 71 |
24 | DÍAZ Ventura | 72 |
28 | SCHLECK Johny | 72 |
41 | TAMAMES Agustín | 66 |
65 | KARSTENS Gerben | 74 |
70 | SAÉZ Ramón | 74 |
78 | PARENTEAU Jean-Pierre | 68 |
82 | STEEVENS Harry | 73 |
83 | ROSIERS Roger | 78 |
85 | KREKELS Jan | 73 |
97 | BILSLAND William | 73 |