Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 164
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Tamames
1
66 kgLasa
2
68 kgSchutz
7
72 kgBracke
13
79 kgZoetemelk
14
68 kgPoulidor
18
71 kgSteevens
24
73 kgKrekels
25
73 kgSaéz
29
74 kgDíaz
30
72 kgAja
31
66 kgGodefroot
33
73 kgParenteau
34
68 kgPijnen
36
72 kgKarstens
55
74 kgDolman
77
71 kgSchleck
81
72 kgRosiers
90
78 kg
1
66 kgLasa
2
68 kgSchutz
7
72 kgBracke
13
79 kgZoetemelk
14
68 kgPoulidor
18
71 kgSteevens
24
73 kgKrekels
25
73 kgSaéz
29
74 kgDíaz
30
72 kgAja
31
66 kgGodefroot
33
73 kgParenteau
34
68 kgPijnen
36
72 kgKarstens
55
74 kgDolman
77
71 kgSchleck
81
72 kgRosiers
90
78 kg
Weight (KG) →
Result →
79
66
1
90
# | Rider | Weight (KG) |
---|---|---|
1 | TAMAMES Agustín | 66 |
2 | LASA Miguel María | 68 |
7 | SCHUTZ Edy | 72 |
13 | BRACKE Ferdinand | 79 |
14 | ZOETEMELK Joop | 68 |
18 | POULIDOR Raymond | 71 |
24 | STEEVENS Harry | 73 |
25 | KREKELS Jan | 73 |
29 | SAÉZ Ramón | 74 |
30 | DÍAZ Ventura | 72 |
31 | AJA Gonzalo | 66 |
33 | GODEFROOT Walter | 73 |
34 | PARENTEAU Jean-Pierre | 68 |
36 | PIJNEN René | 72 |
55 | KARSTENS Gerben | 74 |
77 | DOLMAN Evert | 71 |
81 | SCHLECK Johny | 72 |
90 | ROSIERS Roger | 78 |