Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.8 * weight - 107
This means that on average for every extra kilogram weight a rider loses 2.8 positions in the result.
Delgado
1
64 kgMurguialday
21
58 kgAlonso
28
70 kgUgrumov
35
58 kgWechselberger
37
71 kgRipoll
55
66 kgDomínguez
62
67 kgSukhoruchenkov
69
72 kgNevens
78
58 kgLlach
86
58 kgElliott
90
76 kgPlanckaert
95
69 kgHolm Sørensen
101
77 kgJourdan
126
64 kgArntz
127
70 kgMauri
130
68 kgVilamajo
135
70 kgHarmeling
139
76 kg
1
64 kgMurguialday
21
58 kgAlonso
28
70 kgUgrumov
35
58 kgWechselberger
37
71 kgRipoll
55
66 kgDomínguez
62
67 kgSukhoruchenkov
69
72 kgNevens
78
58 kgLlach
86
58 kgElliott
90
76 kgPlanckaert
95
69 kgHolm Sørensen
101
77 kgJourdan
126
64 kgArntz
127
70 kgMauri
130
68 kgVilamajo
135
70 kgHarmeling
139
76 kg
Weight (KG) →
Result →
77
58
1
139
# | Rider | Weight (KG) |
---|---|---|
1 | DELGADO Pedro | 64 |
21 | MURGUIALDAY Javier | 58 |
28 | ALONSO Marino | 70 |
35 | UGRUMOV Piotr | 58 |
37 | WECHSELBERGER Helmut | 71 |
55 | RIPOLL José Andrés | 66 |
62 | DOMÍNGUEZ Manuel Jorge | 67 |
69 | SUKHORUCHENKOV Sergei | 72 |
78 | NEVENS Jan | 58 |
86 | LLACH Joaquin | 58 |
90 | ELLIOTT Malcolm | 76 |
95 | PLANCKAERT Eddy | 69 |
101 | HOLM SØRENSEN Brian | 77 |
126 | JOURDAN Christian | 64 |
127 | ARNTZ Marcel | 70 |
130 | MAURI Melchor | 68 |
135 | VILAMAJO Jaime | 70 |
139 | HARMELING Rob | 76 |