Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Elliott
2
76 kgPlanckaert
3
69 kgDe Clercq
4
66 kgMauri
11
68 kgvan der Poel
12
70 kgInduráin
14
76 kgDomínguez
22
67 kgSciandri
24
75 kgSkibby
31
70 kgVanderaerden
34
74 kgSunderland
38
65 kgSchur
39
73 kgUgrumov
43
58 kgMejia
55
63 kgde Vries
61
75 kgPieters
65
82 kgWeltz
66
65 kgCordes
68
70 kgRipoll
69
66 kg
2
76 kgPlanckaert
3
69 kgDe Clercq
4
66 kgMauri
11
68 kgvan der Poel
12
70 kgInduráin
14
76 kgDomínguez
22
67 kgSciandri
24
75 kgSkibby
31
70 kgVanderaerden
34
74 kgSunderland
38
65 kgSchur
39
73 kgUgrumov
43
58 kgMejia
55
63 kgde Vries
61
75 kgPieters
65
82 kgWeltz
66
65 kgCordes
68
70 kgRipoll
69
66 kg
Weight (KG) →
Result →
82
58
2
69
# | Rider | Weight (KG) |
---|---|---|
2 | ELLIOTT Malcolm | 76 |
3 | PLANCKAERT Eddy | 69 |
4 | DE CLERCQ Mario | 66 |
11 | MAURI Melchor | 68 |
12 | VAN DER POEL Adrie | 70 |
14 | INDURÁIN Miguel | 76 |
22 | DOMÍNGUEZ Manuel Jorge | 67 |
24 | SCIANDRI Maximilian | 75 |
31 | SKIBBY Jesper | 70 |
34 | VANDERAERDEN Eric | 74 |
38 | SUNDERLAND Scott | 65 |
39 | SCHUR Jan | 73 |
43 | UGRUMOV Piotr | 58 |
55 | MEJIA Alvaro | 63 |
61 | DE VRIES Gerrit | 75 |
65 | PIETERS Peter | 82 |
66 | WELTZ Johnny | 65 |
68 | CORDES Tom | 70 |
69 | RIPOLL José Andrés | 66 |