Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Jalabert
1
66 kgOlano
2
70 kgZülle
3
72 kgCuesta
4
62 kgBartoli
5
65 kgMauri
6
68 kgBruyneel
8
71 kgGarcía Casas
9
63 kgRodrigues
12
68 kgPantani
13
58 kgSerrano
15
63 kgRiis
16
71 kgAlonso
20
70 kgVirenque
21
65 kgGianetti
22
62 kgUgrumov
24
58 kgPlaza
25
68 kgMeinert-Nielsen
26
73 kgMerckx
30
77 kg
1
66 kgOlano
2
70 kgZülle
3
72 kgCuesta
4
62 kgBartoli
5
65 kgMauri
6
68 kgBruyneel
8
71 kgGarcía Casas
9
63 kgRodrigues
12
68 kgPantani
13
58 kgSerrano
15
63 kgRiis
16
71 kgAlonso
20
70 kgVirenque
21
65 kgGianetti
22
62 kgUgrumov
24
58 kgPlaza
25
68 kgMeinert-Nielsen
26
73 kgMerckx
30
77 kg
Weight (KG) →
Result →
77
58
1
30
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | JALABERT Laurent | 66 |
| 2 | OLANO Abraham | 70 |
| 3 | ZÜLLE Alex | 72 |
| 4 | CUESTA Iñigo | 62 |
| 5 | BARTOLI Michele | 65 |
| 6 | MAURI Melchor | 68 |
| 8 | BRUYNEEL Johan | 71 |
| 9 | GARCÍA CASAS Félix Miguel | 63 |
| 12 | RODRIGUES Orlando Sergio | 68 |
| 13 | PANTANI Marco | 58 |
| 15 | SERRANO Marcos Antonio | 63 |
| 16 | RIIS Bjarne | 71 |
| 20 | ALONSO Marino | 70 |
| 21 | VIRENQUE Richard | 65 |
| 22 | GIANETTI Mauro | 62 |
| 24 | UGRUMOV Piotr | 58 |
| 25 | PLAZA David | 68 |
| 26 | MEINERT-NIELSEN Peter | 73 |
| 30 | MERCKX Axel | 77 |